柴田斎苑 地質調査委託

報告書

平成28年1月

仙南地域広域行政事務組合東北ボーリング株式会社

目 次

1 業	& 概要	頁 11
1. *		
2.調	查方法	5
2.1	機械ボーリング	5
2. 2	標準貫入試験	6
2.3	孔内水平載荷試験	7
2.4	乱れの少ない試料の採取	10
2.5	室内土質試験	11
2.6	土壤溶出量試験	12
3.地	形・地質概要	13
3.1	地形概要	13
3. 2	地質概要	14
4.調	查結果	15
4.1	ボーリング調査結果	15
4. 2	孔内水平載荷試験結果	21
4.3	室内土質試験結果	22
4.4	土壤溶出量試験結果	30
5.調	査結果に基づく考察	31
5.1	地盤の土質定数	31
5.2	圧密特性の設定	39
5.3	地盤の圧密状態の判定	42
5.4	建築物の支持層および基礎工法について	44
5.5	設計・施工上の留意点について	45
5.6	造成盛土の沈下検討	47
5.5 5.6	設計・施工上の留意点について	

巻末資料

- ・ボーリング柱状図
- · 孔内水平載荷試験結果資料
- ・室内土質試験結果資料

・計量証明書

1. 業務概要

1)業務目的

本業務は、「柴田斎苑」の建設が計画されている調査地において、ボーリング調査など の地質調査を行い、地層構成(地質分布状況)や地盤強度などを把握し、設計・施工の際 に必要となる地盤に関する基礎資料を得ることを目的とした。

2)業務件名

柴田斎苑 地質調査委託

3)業務場所

宫城県柴田郡村田町大字沼辺粕沢 地内

(図 1-1 調査地案内図参照、図 1-2 調査地点位置図)

4)業務期間

自 平成 27年8月25日 至 平成 28年1月29日

5)業務数量

・機械ボーリング(φ66mm)	11.0m×1ヶ所	14.0m×2ヶ所	
	15.0m×1ヶ所	18.0m×1ヶ所	計 72.0m
・機械ボーリング(φ86mm)	2.0m×1ヶ所	3.0m×1ヶ所	計 5.0m
・標準貫入試験	72 回		
・乱れの少ない試料採取	1本		
・孔内水平載荷試験	1回		
・室内土質試験	1式		
・土壌溶出量試験	3 検体(9 項目))	
詳細は表 1-1 に示すとおりである。			

6)業務企画·監理

仙南地域広域行政事務組合

7) 受注者

東北ボーリング株式会社
仙台市若林区六丁の目元町 6-8
「配 022-288-0321 Fax 022-288-0325
現場代理人:小林 大介(地質調査技士)
照査技術者:菅原 淳(1級土木施工管理技士)

調査項目		今田 日	用任	数量					
		が田 日	単位	No.1	No.2	No.3	No.4	No.5	計
		粘土・シルト	m	9.70	5.10	4.80	4.70	6.50	30.80
		礫·礫質土	m	0.00	4.10	4.60	0.80	6.80	16.30
松井子	φ 66mm	軟岩	m	5.30	4.80	4.60	5.50	4.70	24.90
酸酸小一リンク		計	m	15.00	14.00	14.00	11.00	18.00	72.00
	ϕ 86mm	粘土・シルト	m	0.00	0.00	2.00	0.00	3.00	5.00
	(別孔)	計	m	0.00	0.00	2.00	0.00	3.00	5.00
		粘土・シルト	旦	9	4	4	4	6	27
抽滩世┒⇒₽聆		礫·礫質土	回	0	4	5	1	7	17
惊华貝八迅映		軟岩	回	6	6	5	6	5	28
		計	回	15	14	14	11	18	72
乱れの少ない試料	4採取		本	0	0	0	0	1	1
孔内水平載荷試	淚		口	0	0	1	0	0	1
	土粒子の密度		試料	1	1	2	0	3	7
	含水比		試料	1	1	2	0	3	7
	粒度(フルイ+沈降分析)		試料	1	0	2	0	2	5
	粒度(フルイ)		試料	0	1	0	0	1	2
室内土質試験	液性限界	Į	試料	1	0	2	0	2	5
	塑性限界	Į	試料	1	0	2	0	2	5
	湿潤密度		試料	0	0	0	0	1	1
	一軸圧縮	試験	試料	0	0	0	0	1	1
	圧密		試料	0	0	0	0	1	1
	カドミウム	及びその化合物	検体	1	0	1	0	1	3
	六価クロ」	公化合物	検体	1	0	1	0	1	3
	シアン化	合物	検体	1	0	1	0	1	3
日本演出目	水銀及び	その化合物	検体	1	0	1	0	1	3
工場俗出重	セレン及び	びその化合物	検体	1	0	1	0	1	3
市 八向央	鉛及びそ	の化合物	検体	1	0	1	0	1	3
	砒素及び	その化合物	検体	1	0	1	0	1	3
	ふっ素及	びその化合物	検体	1	0	1	0	1	3
	ほう素及び	びその化合物	検体	1	0	1	0	1	3

表 1-1 業務数量一覧表

※ 盛土は礫混じり砂質シルトであるため、粘性土として計上した

図 1-1 調査地案内図(S=1:25,000) (出典:国土地理院発行 1/25000 地形図「岩沼、村田、亘理、大河原」)を一部抜粋

2. 調査方法

2.1 機械ボーリング

機械ボーリングは、調査地における土層構成を把握することを目的として、計画地内の5箇所において実施した。

ボーリング装置は、図 2-1 に示すようなハイドロリックフィード式ボーリング装置を 使用し、掘削孔径は標準貫入試験のみの本孔では φ 66mm、乱れの少ない試料の採取およ び孔内水平載荷試験を行った別孔については φ 86mm を選択し、ノンコアボーリングを実 施した。

ボーリング掘削に際しては, 孔壁保護のためケーシングを挿入して掘削能率の向上に 努めた。

ボーリングによる土質判定は、標準貫入試験で採取した乱した試料の目視観察の他、 掘削速度や押し込み圧力、泥水の色調、スライムの種類・量等に基づいて総合的に判断した。

図 2-1 ハイドロリックフィード式ボーリング装置の機構例および全体図

2.2 標準貫入試験

標準貫入試験は、「粘性土の硬軟」および「砂質土の締り具合」の概略の指標となる「N 値」を求めるとともに、「乱した試料」を採取することを目的に、原則として深度 1m毎 に1回の割合で実施した。

試験方法は、「JIS A 1219 附属書 A」に準拠し、図 2-2 の標準貫入試験概略図に示すように使用機械は標準貫入試験用(SPT)サンプラー、ガイドロッド、アンビル、ハンマー等を使用した。

本試験は、始めに 15cm の予備打ちを行い、次に重量 63.5±0.5kg のハンマーを高さ 76 ±1cm から自由落下させて、30cm 貫入(本打ち)させるために要する打撃回数(N値)を 測定するものである。

なお、標準貫入試験で採取した試料は、目視観察を行った後、自然含水比が変化しない ように密封した容器に入れて提出した。

2.3 孔内水平載荷試験

1) 試験方法

本試験は、「孔内水平載荷試験方法」(地盤工学会基準:JGS1421)に準じて実施し、装置は、応用地質(株)製のLLT(Lateral Load Tester)を用いた。

本装置はボーリング孔内の所定の位置にゾンデを挿入した後、高圧ガス(窒素ガス)を 介してゾンデ内に送水,加圧膨張させ、この時の圧力とゴムチューブの膨張量、すなわち 土に与えた変形量の関係から地盤の変形特性を求めるものである。LLTの測定装置の 概要は図 2-3 に示したとおりであり、圧力-容積計(タンク),ゾンデ(載荷部),ガスボ ンベ(給圧部)と各々を連結するナイロンチューブから構成される。

試験は急速載荷(時間制御)で行い、加圧後15秒,30秒,60秒,120秒にタンクのス タンドパイプの水位を読み、105秒でセル圧(ゾンデ内圧力)を記録する。1段階の載荷 は120秒で終了し、直ちに次の加圧段階に入る。

試験は、明らかに地盤が破壊状態になるか、タンク内の水が全てゾンデに注入された 時点で終了とした。

図 2-3 LLT装置図

2) 解析方法

試験結果は図 2-4 に示すような載荷圧力 Pe~半径 r 曲線、および載荷圧力 Pe~変形 速度 Δ H 曲線として整理した。

測定K値Kmは、初期半径以降の疑似弾性領域、すなわちPe-r曲線がほぼ直線をな す部分の勾配として次式のように決定される。

$$\mathrm{Km} = \frac{\Delta \mathrm{P}}{\Delta \mathrm{r}}$$

また、変形係数Emは弾性論から2次元変形問題として取扱う。すなわち、応力は弾性 領域内にあり、半径方向の面に関して平面歪の条件が満たされていると仮定すると、次 式で表わされる。

なお、ポアソン比は軟弱地盤においては 0.3~0.5 程度と考えられるが、一般的には ν = 0.3 と仮定して用いることが多い。

その他、地盤の力学的特性点(静止土圧 P 0,降伏圧 Py,破壊圧 P1)は、Pe-r曲線, Pe-ΔH曲線の形状から決定され、真の降伏圧 Py,破壊圧 P1は次式で表わすことができる。

$$Py = Py' - P_0$$
$$P1 = P1' - P_0$$

図 2-4 データ整理模式図

2.4 乱れの少ない試料の採取

乱れの少ない試料とは、土の構造と力学的特性をできるだけ原位置に近い状態で採取 した試料のことで、主に軟質な粘性土層を対象土質としている。

乱れの少ない試料の採取は、地盤工学会基準に準じて実施した。基準化されたサンプ ラーの構造と適用地盤を表 2-3 に示す。

構造及び地盤の種類		地盤の種類										
	粘性土			砂質土		砂礫		岩盤				
				硬質	緩い	中位	密な	緩い	密な			
					N値0)目安				軟	中硬	硬
サンプラーの種類	0~4	4~8	8 以上	10 以下	10~ 30	30 以上	30 以下	30 以上	岩	岩	岩	
固定ピストン式 シンウォールサ	エキステンショ ンロッド式	0	0		0							
ンプラー (JGS 1221)	水圧式	0	0	0	0							
ロータリー式二重管サンプラー (JGS 1222)			0	0								
ロータリー式三重管サンプラー (JGS 1223)			O	O	0	0	O		0			
ロータリー式スリープ内蔵二重管 サンプラー		0	0	0	0	0	0	0	0	O	O	O
ブロックサンプリング (JGS 1231)		0	O	O	0	0	O		0	0		
ロータリー式チューブサンプリング JGS 3211				0						0	0	

表 2-3 基準化されたサンプラーの構造と適用地盤

◎:適している ○:適用可能

(出典;地盤調査の方法と解説 公益社団法人地盤工学会 平成 25 年 3 月 P. 202)

今回の調査では、N値4以下を示す粘性土の サンプリングに適している固定ピストン式シン ウォールサンプラーを用いてサンプリングを実 施した。図 2-5 に使用したサンプラーの概略図 を示した。

図 2-5 固定ピストン式シンウォールサンプラー(水圧式)概略図 (出典:地盤調査の方法と解説 公益社団法人地盤工学会 平成 25 年 3 月 P. 230)

2.5 室内土質試験

室内土質試験は、標準貫入試験用サンプラーおよび固定ピストン式シンウォールサン プラーにより採取した試料を用いて、物理的性質や力学的性質の把握を目的として実施 した。

表 2-4 に今回の調査で実施した試験の規格と利用法を示した。

表 2-4 土質試験の規格と利用法

	試験名	試料の状態	求められる値
	土粒子の密度 JIS A 1202	乱した	・土粒子の密度
物理的性質試験	土の含水比 JIS A 1203	乱した	·含水比
	土の粒度 JIS A 1204	乱した	 ・最大粒径 ・粒径加積曲線と各粒径 ・均等係数 ・曲率係数 ・細粒分含有率
	土の液性限界 土の塑性限界 JIS A 1205	乱した	 ・液性限界 ・流動曲線 ・塑性限界 ・塑性指数 ・コンシステンシー指数
	土の湿潤密度 JIS A 1225	乱れの少ない	 ・湿潤密度 ・乾燥密度
力 学 的	土の一軸圧縮 JIS A 1216	乱れの少ない	 ・供試体の破壊状況 ・圧密応力-ひずみ曲線 ・一軸圧縮強さ ・破壊ひずみ
2 性 質 試 験	土の圧密 JIS A 1217	乱れの少ない	・時間-圧縮量曲線 ・e-Logp,f-Logp 曲線 ・圧縮指数 ・圧密降伏応力 ・体積圧縮係数

(出典:地盤材料試験の方法と解説 社団法人地盤工学会 平成21年11月を参考)

2.6 土壤溶出量試験

土壌溶出量試験は、ボーリングにより採取した盛土のコア試料を用いて、土壌汚染対 策法が定める特定有害物質の内、第二種特定有害物質に定める9項目を実施した。

測定方法に関しては、土壌汚染対策法施行規制に基づく、「土壌溶出量調査に係る測 定方法を定める件(平成15年環境省告示第18号)」に定める測定方法により実施し、 表 2-5 には今回の調査で実施した測定項目および測定方法を示した。

	× - ·				
試験 区分	測定項目	測定方法			
	カドミウム及びその化合物	JIS K 0102 55.4(2013)			
土壤	六価クロム化合物	JIS K 0102 65.2.1(2013)			
	シアン化合物	JIS K 0102 38.1.2 および 35.5(2013)			
	水銀及びその化合物	S46 環告第 59 号付表 1 (H26 改正)			
浴出量	セレン及びその化合物	JIS K 0102 67.4(2013)			
試験	鉛及びその化合物	JIS K 0102 54.4(2013)			
	砒素及びその化合物	JIS K 0102 61.4(2013)			
	ふっ素及びその化合物	JIS K 0102 34.4(2013)			
	ほう素及びその化合物	JIS K 0102 47.4(2013)			

表 2-5 調査項目一覧表

3. 地形·地質概要

3.1 地形概要

調査地は、東日本旅客鉄道株式会社が運営する東北本線「大河原駅」の北方約3.1km付 近に位置する。

図 3-1 微地形区分 (出典;宮城県地震地盤図「宮城県南部」 宮城県 1985 年)より一部抜粋

この付近は、奥羽山脈の南東端にあた り、標高 100~200mほどの丘陵地が広が る地域である。

丘陵地は、白石川やその支流の荒川、松 川などにより開析され、各河川沿いには 谷底平野などの沖積平野が広がってい る。また、丘陵地内には侵食によって削ら れた大小の谷が刻まれ、崖部には崩壊に 伴って生じた階段状の緩傾斜地が存在す る。

調査地は、図 3-2 に示すように、丘陵 地内の侵食および河川による開析によっ て形成された谷部端部に位置する。

3.2 地質概要

調査地の地質は、図 3-3 に示す「表層地質図(白石)」(土地分類基本調査 宮城県 昭和 60年)によれば、新生代・第四紀・完新世の沖積平野堆積物と新生代・新第三紀・中新世の高館安山岩類とが分布する境界部にあたる。

図 3-3 調査地付近の地質図(S=1:50,000) (出典:土地分類基本調査「表層地質図 白石」「表層地質図 岩沼」5万分の1 宮城県)より一部抜粋

調査地周辺の沖積層は、白石川・松川・薮川・荒川などの各河川沿いに発達し、一般に 分布幅は 4km 以内であるが、白石川下流の大河原付近ではそれよりもやや広く分布して いる。白石川や松川沿い一帯では自然堤防が明瞭で、荒川沿いでは河川に沿って僅かに 自然堤防が分布している。河川沿いに分布する沖積平野堆積物は主に礫、砂、泥からな り、これら河川の河床には礫、砂からなる河床堆積物が分布する。

調査地に分布する基盤岩は、新生代・新第三紀・中新世・高館安山岩類と考えられ、主 として安山岩質または玄武岩質の溶岩と火山角礫岩および凝灰角礫岩などの火山砕屑岩 によって構成され、下部には薄いシルト岩を挟む。

今回の調査結果では、層厚 0.95~3.80mの概ね粘性土からなる盛土の下位に、沖積層 の粘性土および礫質土を確認した。さらにその下位には基盤岩である新生代・新第三紀・ 中新世の高館安山岩類である安山岩および火山角礫岩を確認することができた。

4. 調査結果

4.1 ボーリング調査結果

今回の調査では、業務概要に記した前出の図 1-2 調査地点位置図に示す 5 箇所で機械 ボーリングを実施した。

地質状況の詳細は、巻末資料の「ボーリング柱状図」に示すとおりである。この調査結果に基づいて作成した地質断面図を図 4-1 に示すとともに、調査地に分布する地質層序をとりまとめた地質層序表を表 4-1 に示した。

t I	地質 時代		質 代 地層名 地質名		地質 記号	層厚 (m)	N值	記事
			盛土	礫混じり 砂質シルト	Bn	0.95∼ 3.80	1~6	径 2~30mm の亜角~亜円礫を混 入し、不規則に軽石片および雲 母片、有機物、炭化物を混入す る。
	第	完	粘性土1	礫混じり 砂質シルト	Ac1	2. 40∼ 3. 20	0~19	細砂から中砂をレンズ状に混入 し、径 5~40mm の亜角~亜円礫 が点在する。軽石片および有機 物を混入する。
新 生 代	紀	利世	粘性土2	礫混じり シルト	Ac2	0.00∼ 2.70	1~10	径 2~30mm の礫を混入し、不規 則に砂をレンズ状に挟在する。 少量の有機物を混入する。
			礫質土	シルト混じり 砂礫	Ag	0.00∼ 6.75	5~29	径 5~50mm の亜角~亜円礫を主 体とし、礫種は硬質な安山岩礫 である。基質はシルトを混入す る、中~粗砂である。
	新第三紀	中新世	高館 安山岩類	安山岩・ 火山角礫岩	Ta	4.65~ 5.50 以上	50以上	コアは送水掘りにより礫状~棒 状で採取され、コアの硬さは、ハ ンマーの普通~強打で割れる程 度である。

表 4-1 地質層序表

※ 2層に跨るN値は表示していない

調査地は谷の端部であり、岩盤の出現深度は埋没谷地形を反映して、谷の横断方向で は谷の中心(No.5 孔)が最も深く、山に近い側方(No.3 孔および No.4 孔)では岩盤の出現 深度が浅くなっている。一方、谷の縦断方向では、上流に位置する No.1 孔で浅く、下流 に位置する No.5 孔では深くなっている。

また、谷の上流に位置する No.1 孔では Ag 層が分布しておらず、谷の中央部(No.5 孔) で厚く分布している。このことから、Ag 層は谷の上流から供給されたものではなく、白 石川や荒川により運搬され堆積したものと考えられる。

凡例 地質層序表

;	地層名	地層名	記号	層厚(m)	N 値
	盛土	礫混じり 砂質シルト	Bn	0.95~ 3.80	1~6
	粘性土1	性±1 礫混じり 砂質シルト		2. 40~ 3. 20	0~19
	粘性土2	法性土2 送性土2 ジルト		0.00~ 2.70	1~10
	礫質土	シルト混じり 砂礫	Ag	0.00~ 6.75	5~29
	高館 安山岩・ 安山岩類 火山角礫岩		Ta	4.65~ 5.50以上	50以上
-					

※2層に跨るN値は表示していない。

断面図 凡例

隼貫入試験(N値)
内土質試験実施箇所
内水平載荷試験測定箇所
F水位(ボーリング作業時)

図4-1(1) 地質断面図(西一東) (V=1:200 H=1:200)

鬙名	地層名	記号	層厚(m)	N值			
±	礫混じり 砂質シルト	Bn	0.95~ 3.80	1~6			
ŧ±1	礫混じり 砂質シルト	Ac1	2. 40~ 3. 20	0~19			
ŧ±2	礫混じり シルト	Ac2	0. 00~ 2. 70	1~10			
質土	シルト混じり 砂礫	Ag	0.00~ 6.75	5~29			
館 岩類	安山岩・ 火山角礫岩	Ta	4.65~ 5.50以上	50以上			

凡例 地質層序表

地	質時	针代	代 地層名 地層名		記号	層厚(m)	N值
			盛土	礫混じり 砂質シルト	Bn	0.95~ 3.80	1~6
	第	完	粘性土1	礫混じり 砂質シルト	Ac1	2.40~ 3.20	0~19
	世	粘性土2	礫混じり シルト	Ac2	0.00~ 2.70	1~10	
			礫質土	シルト混じり 砂礫	Ag	0.00~ 6.75	5~29
	新第三紀	中新世	高館 安山岩類	安山岩・ 火山角礫岩	Ta	4.65~ 5.50以上	50以上

※2層に跨るN値は表示していない。

断面図	凡例
-----	----

•:7	標準貫	入試験	ŧ (N	值)	
•	室内土	質試験	実施	箇所	
<u>ا</u> : ا	孔内水	平載荷	ī試験	測定笸	i所
₹::	地下水	位(ポ	ミーリ	ング作	業時)

図4-1(3) 地質断面図(北一南) (V=1:200 H=1:200) 今回の調査で確認した調査地の地質の特徴は、以下のとおりである。

1) 盛土(Bn): 礫混じり砂質シルト

砂岩および凝灰岩などの掘削土を主体とした、礫混じり砂質シルトの盛土である。 全体に径 2~30mm の亜角~亜円礫を混入し、稀に径 40~60mm の礫も点在する。 不規則に軽石片および雲母片を伴う、火山灰質砂を混入する。 有機物および炭化物を混入する。 層厚は 0.95~3.80mを有する。 N値は 1~6 を示す。

2)新生代第四紀完新世

(1)粘性土1(Ac1): 礫混じり砂質シルト

全体に細砂から中砂をレンズ状に混入する不均質なシルトである。
径 5~40mmの亜角~亜円礫が点在し、稀に径 50mm ほどの礫を混入する。
不規則にくり貫きコア長で 50mm ほどの安山岩礫を混入する。
所々、礫が主体のところも認められる。
軽石片および有機物を混入する。
層厚は 2.40~3.20mを有する。
N値は 0~19 を示す。

(2) 粘性土2(Ac2): 礫混じりシルト

径 2~30mmの礫を混入する不均質なシルトである。
所々に径 50mm ほどの礫が点在する。
不規則に砂をレンズ状に挟在する。
少量の有機物を混入する。
層厚は 0.00~2.70mを有する。
N値は 1~10 を示す。

(3) 礫質土(Ag)シルト混じり砂礫

径 5~50mm の亜角~亜円礫が主体である。 礫種は硬質な安山岩礫が主体で、基質はシルトを混入する、中~粗砂である。 軽石片および雲母片を伴う、火山灰質砂を混入する。 所々、シルトを多く混入する。 層厚は 0.00~6.75mを有する。 N値は 5~29 を示す。

3)新生代新第三紀中新世

(1)高館安山岩類(Ta):安山岩

コアは送水掘りにより礫状~棒状で採取される。 コアの硬さは、ハンマーの普通~強打で割れる程度である。 不規則に亀裂が発達し、亀裂面は黒褐色で粘土および砂を挟在する。 亀裂周辺の安山岩は赤褐灰色を呈し、新鮮部は緑青灰色を呈する。 石英粒を混入し、微細な石英粒の密集が線状に認められる。 層厚は4.65~5.30m以上を有する。 N値は50以上を示す。

(2)高館安山岩類(Ta):火山角礫岩

コアは送水掘りにより礫状〜短棒状で採取される。 短棒状で採取された礫の硬さは、ハンマーの普通〜強打で割れる程度である。 礫は径 20〜300mmの安山岩礫が主体である。 基質は軽石片や細礫を混入する凝灰岩である。 不規則に亀裂が認められ、亀裂面は黒褐色で粘土および砂を挟在する。 深度 9.00m付近から短棒〜棒状コアで採取される。 層厚は 5.50m以上を有する。 N値は 50 以上を示す。

4) 地下水

本調査において、水を使わずに掘削を行った無水掘で確認した地下水位を表 4-2 に示した。

調査地における地下水位は、調査時点では盛土(Bn)層内で確認したが、降水や季節変 化によって変動する可能性がある。

	地园夕	孔口標高	地下水位						
地点	地層石	(m)	GL- (m)	標高 (m)					
No. 1	盛土(Bn)	21.17	3. 75	17.42					
No. 2	盛土(Bn)	18.27	1.35	16.92					
No. 3	盛土(Bn)	17.24	0.50	16.74					
No. 4	盛土(Bn)	18.69	2.10	16.59					
No. 5	盛土(Bn)	17.25	0.95	16.30					

表 4-2 地下水位測定結果

4.2 孔内水平載荷試験結果

孔内水平載荷試験は、地盤の変形係数、降伏圧力および極限圧力を把握することを目 的として、発注者との協議により調査地内の No.3 孔の別孔、深度 2m付近(深度 2.0~ 2.6m間)にて実施した。

孔内水平載荷試験結果の詳細は、巻末資料の「孔内水平載荷試験結果資料」に示すとおりである。表 4-3 に孔内水平載荷試験結果を示した。

試驗深度			静止土圧	降伏圧	破壊圧	地盤係数	変形係数	
(m)	土質名	N值	Po	Py	PL	Km	E	
(111)			(kN/m^2)	(kN/m^2)	(kN/m^2)	(kN/m^3)	(kN/m^2)	
2.0~2.6	礫混じり砂質 シルト(Ac1)	1/35	20.9	31.6	58.4	13,480	816.4	

表 4-3 孔内水平載荷試験結果

孔内水平載荷試験から得られた変形係数と標準貫入試験のN値との関係は「地盤調査の方法と解説」によれば、図 4-2 に示すように地盤材料に関わらず、E=700N(kN/m²)という関係が近似的に成立している。

図 4-2 に No.3 孔の深度 2.15mのN値(1)と今回実施した孔内水平載荷試験の変形係 数との関係を示した。図 4-2 に示すように、今回の試験結果は、概ねE = 700Nの近似式 と整合しており、特に異常な値ではなく試験結果は妥当なものと判断する。

したがって、No.3 孔の深度 2m付近の変形係数は、概ねE = 800 (kN/m²) 程度である ものと考えられる。

4.3 室内土質試験結果

室内土質試験は、調査地に分布する沖積層の物理的性質および力学的特性の把握を目 的として実施した。

室内土質試験に供した試料は、標準貫入試験により採取した、乱した試料(6 試料)お よび固定ピストン式シンウォールサンプラーにより採取した乱れの少ない試料(1 試料) を用いて実施した。

試験結果の詳細は、巻末資料の「室内土質試験結果資料」に示したとおりである。 この試験結果をまとめた試験結果一覧表を表 4-4 に示した。

※今回の試験結果から、D1-1(Ac1 層)および D5-1(Ac2 層)の試料は Ac 層から採取した試 料であるが、全体に細砂をレンズ状に挟在し、土層自体も細砂を混入するシルトであ ることから、試料に含まれる砂質土の割合が多くなったため、試験結果が砂質土とな った。また、D3-1(Ac1 層)および D3-2(Ac2 層)の試料についても、Ac 層から採取した 試料であるが、全体に礫の混入が多く、土層自体も細砂を混入するシルトであること から、礫と細砂の割合が粘性土よりも多くなったため、試験結果が砂質土となった。

				表 4-4 室	图内土質試験結果·	一覧表			
	試料番号		D1-1	D2-1	D3-1	D3-2	T5-1	D5-1	D5-2
	地質記号		Ac1	Ag	Ac1	Ac2	Ac1	Ac2	Ag
	採取深度(m)		6.15~6.45	6.15~6.45	2.15~2.50	4.15~4.45	3.00~3.80	5. 15~5. 45	9.15~9.45
	湿潤密度 ρ _t	g/cm ³	_		_	_	1.881	_	_
	乾燥密度 p d	g/cm ³	_		_	_	1.415	_	_
-	土粒子の密度 ρ。	g/cm ³	2.693	2.731	2.679	2.632	2.661	2. 693	2. 702
般	自然含水比 W _n	%	24. 3	12.5	36. 3	41.9	32. 5	40. 3	16.4
	間隙比 e		_		_	_	0.881	_	_
	飽和度 S _r	%	_		_		98. 2	_	_
	礫分	%	37.3	59.6	25.1	26.8	2.6	4.9	48.7
	砂分	%	37.9	27.1	33. 4	36. 7	45.5	54.1	37.9
粒	シルト分	%	7.5	13.3	19. 1	13. 4	25.4	16. 3	10.4
	粘土分	%	17. 3		22.4	23. 1	26. 5	24.7	
	最大礫径	mm	37.5	37.5	26.5	26.5	4.75	9.5	26.5
コン	液性限界 W _L	%	68.3	_	71.6	62.7	64.0	56.3	_
システ	塑性限界 W _p	%	28.8		31.5	27.7	30. 0	29.4	_
	塑性指数 I _p	%	39. 5		40.1	35.0	34. 0	26. 9	_
分	地盤材料の分類名		細粒分質礫質砂	細粒分まじり 砂質礫	細粒分質礫質砂	細粒分質礫質砂	砂質粘土 (高液性限界)	細粒分質砂	細粒分まじり 砂質礫
親	分類記号		(SFG)	(GS-F)	(SFG)	(SFG)	(CHS)	(SF)	(GS-F)
	試験方法		_	_	_	_	段階載荷	_	_
圧	圧縮指数 C。		_		_		0.46	_	_
伍	圧密降伏応力 p。	kN/m ²	_		_	_	63.6	_	_
一軸	ー軸圧縮強さ qu	kN/m ²	_	—	_	-	14.8~17.9		_

(1) 土粒子の密度試験結果 (JIS A 1202)

土粒子の密度は、試料の鉱物や有機物の種類と量などによって変化するが、一般的な 無機質土であれば 2.6~2.8(g/cm³)程度の範囲内にある。

代表的な土粒子の密度測定例を表 4-5 に示した。

鉱物名		密度 ρ s (g/cm³)	土 質 名	密度ρs (g/cm³)
石 ፺	 英	2.6~2.7	豊 浦 砂	2.64
長 表	石	2.5~2.8	沖 積 砂 質 土	2.6~2.8
雲	母	2.7~3.2	沖 積 粘 性 土	2.50~2.75
角閃	石	2.9~3.5	洪 積 砂 質 土	2.6~2.8
輝	石	2.8~3.7	洪 積 粘 性 土	2.50~2.75
磁鉄	鉱	5.1~5.2	泥炭(ピート)	1.4~2.3
クロライ	\vdash	2.6~3.0	関東ローム	2.7~3.0
イライ	\vdash	2.6~2.7	まさ土	2.6~2.8
カオリナイ	\mathbb{P}	2.5~2.7	しらす	1.8~2.4
モンモリロナイ	Ъ	2.0~2.4	黒 ぼ く	2.3~2.6

表 4-5 主な鉱物と土粒子の密度の例(嘉門・浅川に加筆修正)

(出典;地盤材料試験の方法と解説 社団法人地盤工学会 平成 21 年 11 月 P. 101)

今回の試験結果は、粘性土 (D1-1, D3-1, D3-2, D5-1, T5-1)の試料で「ρs=2.632~ 2.693g/cm³」、礫質土 (D2-1, D5-2)の試料で「ρs=2.702~2.731g/cm³」であることか ら、一般的な沖積層の範囲内にあるものと言える。

(2) 土の含水比試験結果 (JIS A 1203)

一般に沖積層の含水比としては、砂質土では 30%以下のもの、粘性土では 30%以上の ものが多い。国内の代表的な含水比の範囲を表 4-6 に示した。

	沖利	責層	洪積層	関東	高有機
	粘性土	砂質土	粘性土	ローム	質 土
含水比 W(%)	30~150	10~30	20~40	80~180	80~1200

表 4-6 国内における含水比のおおよその範囲

(出典:地盤材料試験の方法と解説 社団法人地盤工学会 平成 21 年 11 月 P. 181)

今回の試験結果は、粘性土(D3-1,D3-2,D5-1,T5-1)の試料で「Wn=32.5~41.9%」 礫質土(D2-1,D5-2)の試料で「Wn=12.5~16.4%」であることから、一般的な沖積層 の範囲内にあるものと言えるが、D1-1(Ac1)の試料は「Wn=24.3%」となり、砂質土を 多く混入する影響により、やや低い値を示す結果となった。

(3) 土の粒度試験結果 (JIS A 1204)

図 4-3 に今回の粒度試験結果をまとめた粒径加積曲線総括図を示した。

図 4-3 粒径加積曲線総括図

今回の試験結果から、粘性土の試料は全体的に砂を多く混入する試料と言える。また、 D1-1(Ac1)と D3-1(Ac1)と D3-2(Ac2)の試料は礫を多く混入するのに対し、T5-1(Ac1)と D5-1(Ac2)の試料は礫の混入が少ないことが分かる。

一方、礫質土の試料は D2-1(Ag)の試料が粗礫~中礫を主体とするのに対し、D5-2(Ag)の試料は中礫~細礫を主体とする試料であることが分かる。

(4) 土の液性限界・塑性限界試験結果 (JIS A 1205)

シルト粒子や粘土粒子を多く含む細粒土は含水量の多少に応じて図 4-4 に示すように 液体から固体まで状態が変化する。

地盤工学では含水量によるこのような状態変化や変形のしやすさを総称してコンシス テンシーと称している。

液性限界は土が塑性状態から液状に移るときの含水比をいい、塑性限界は塑性状態か ら半固体状に移るときの含水比をいう。

図 4-4 土のコンシステンシー

・コンシステンシー指数 I。= (W_L-W_n) / I_p

細粒土の硬軟や安定の程度を表し、1よりも大きいときは安定な状況であることを 示す。

・液性指数 $I_{L} = (W_{n} - W_{p}) / I_{p}$

相対含水比とも呼ばれ、与えられた含水比における土の相対的な硬軟を表す指数 で、ゼロに近いほど土は安定であり、大きくなるほど圧縮性は大きく、また鋭敏なこ とを示す。

今回の試験結果を表 4-7 に示し、試験結果の関係図を図 4-5 に示した。

通常、自然状態の安定した粘性土であれば、塑性体であることから自然含水比Wn は液 性限界WL と塑性限界Wp の間となる。しかし、ヘドロなどの泥濘化している土では、液 性限界WL より自然含水比Wn の方がかなり大きい値となり、逆に塑性限界Wp よりも自 然含水比Wn の方が低い状態と言うのは、半固体に近い状態であることから乾燥気味であ ると言える。

今回の調査結果では、D1-1、D3-1、T5-1のAc1層の試料においては自然含水比Wnが 塑性限界寄りを示し、D3-2、D5-1のAc2層の試料においては概ね液性限界と塑性限界の 中間部を示す結果となった。このことから、調査地における粘性土層は比較的安定した 状態であると判断できる。

試料 番号	地層 記号	含水比 W _n	液性限界 W _L	塑性限界 W _p	塑性指数 I _p	コンシステン シー指数I。	液性指数 I _L
D1-1	Ac1	24.3	68.3	28.8	39.5	1.11	-0.11
D3-1	Ac1	36.3	71.6	31.5	40.1	0.88	0.12
D3-2	Ac2	41.9	62.7	27.7	35.0	0.59	0.41
T5-1	Ac1	32.5	64.0	30.0	34.0	0.93	0.07
D5-1	Ac2	40.3	56.3	29.4	26.9	0.59	0.41

表 4-7 液性限界·塑性限界試験結果

図 4-5 試験結果図

(5) 土の湿潤密度試験結果 (JIS A 1225)

今回の調査では、乱れの少ない試料採取で採取した T5-1(Ac1)を対象に実施した。 国内における代表的な土の湿潤密度と乾燥密度の範囲を表 4-8 に示した。

口 <u>五十八</u> 五十三	沖利	責層	洪積層	関東	高有機
試験項目	粘性土	砂質土	粘性土	ローム	質 土
湿潤密度ρt(g/cm ³)	1.2~1.8	1.6~2.0	1.6~2.0	1.2~1.5	0.8~1.3
乾燥密度ρd(g/cm³)	0.5~1.4	1.2~1.8	1.1~1.6	0.6~0.7	0.1~0.6

表 4-8 国内における土の密度のおおよその範囲

(出典 ; 地盤材料試験の方法と解説 社団法人地盤工学会 平成 21 年 11 月 P. 181)

今回の試験結果は、「 ρ t=1.881g/cm³」となり、砂質土を多く混入する影響により、 やや高い値を示す結果となった。

(6) 土の一軸圧縮試験結果 (JIS A 1216)

今回の調査では、乱れの少ない試料採取で採取した T5-1(Ac1)を対象に実施し、試験結果を表 4-9 に示した。

表 4-9 一軸圧縮試験結果

試料	地層	一軸圧縮強さ	破壊ひずみ	変形係数
番号	記号	qu(kN/m²)	ε _f (%)	E ₅₀ (MN/m ²)
T5-1	Ac1	14.8~17.9	2.60~4.50	0.681~1.17

今回の試験結果では、一軸圧縮強さの値が「 $qu=14.8 \sim 17.9 \text{kN/m}^2$ 」という結果になり、破壊ひずみ ϵ_f の値が「 $\epsilon_f=2.60 \sim 4.50\%$ 」という結果となった。また、変形係数も「 $E_{50}=0.681 \sim 1.17 \text{MN/m}^2$ 」となり、供試体によってバラつきが大きいことから、不均質な試料であるものと考えられる。

(7) 土の圧密試験結果 (JIS A 1217)

今回の調査では、乱れの少ない試料採取で採取した T5-1 (Ac1)を対象に実施した。 圧密定数には、圧縮指数、圧密降伏応力、体積圧縮係数および圧密係数等がある。これ らの圧密定数は、盛土や埋土等の新規荷重が粘性土地盤に載荷される場合の沈下量や沈 下速度の解析に用いられる。圧密試験の適用範囲としては、細粒分を主体とした透水性 の低い飽和土が対象である。

図 4-6 に e~Log P 曲線、図 4-7 に mv~Log P 曲線、図 4-8 に Cv~Log P 曲線を図示した。

4.4 土壤溶出量試験結果

土壌溶出量試験は、調査地に分布する盛土層を対象に、土壌汚染対策法が定める特定 有害物質の内、第二種特定有害物質に定める9項目を実施した。

試験に供した試料は、調査地内にて現地盤の掘削および搬出の可能性がある No.1 孔および購入が検討されている土地で実施した No.3 孔および No.5 孔のボーリング掘削により採取した深度 0.00~1.00mの土壌 3 試料を用いて実施した。

試験結果の詳細は、巻末資料の「計量証明書」に示したとおりである。

この試験結果をまとめた試験結果一覧表を表 4-10 に示した。

試験 区分	計量項目	単位	No.1	No.3	No.5	定量下限值	指定基準
	カドミウム及び その化合物	mg/L	0.001 未満	0.001 未満	0.001 未満	0.001	0.01以下
	六価クロム化 合物	mg/L	0.01 未満	0.01 未満	0.01 未満	0.01	0.05以下
土壤	シアン化合物	mg/L	0.1 未満	0.1 未満	0.1 未満	0.1	検出されないこと
沿出量試験(笠	水銀及び その化合物	mg/L	0.0005 未満	0.0005 未満	0.0005 未満	0.0005	水銀が 0.0005 以 下、かつアルギル 水銀が検出されな いこと
2二種 些	セレン及び その化合物	mg/L	0.001 未満	0.001 未満	0.001 未満	0.001	0.01 以下
定有	鉛及び その化合物	mg/L	0.002	0.001 未満	0.001	0.001	0.01 以下
物質)	砒素及び その化合物	mg/L	0.001 未満	0.001 未満	0.001 未満	0.001	0.01 以下
	ふっ素及び その化合物	mg/L	0.12	0.32	0.08 未満	0.08	0.8以下
	ほう素及び その化合物	mg/L	0.1 未満	0.1 末満	0.1 未満	0.1	1以下

表 4-10 土壤溶出量試驗結果一覧表

注:指定基準は、土壌汚染対策法に基づく要措置区域の指定基準(汚染状態に関する基準)。

「検出されないこと」;基準が定める方法により測定した場合において、その結果が当該方法の 定量限界を下回ることをいう。

「鉛及びその化合物」、「ふっ素及びその化合物」において、検出されているものの、 いずれの値も基準値以下を示し、その他項目においてはすべて定量下限値未満であるこ とから、対象地の土壌で第二種特定有害物質による土壌汚染は無いと判断される。

なお、自然の岩石や堆積物中には、鉛やふっ素などが含まれていることから、これらを 材料とした盛土であると考えられる。

5. 調査結果に基づく考察

5.1 地盤の土質定数

機械ボーリングによって確認した地質状況、標準貫入試験によって得られたN値の結 果を元に、土質定数の提案値を設定した。

表 5-1 に土質定数の提案値を示すとともに、その設定根拠を以下に示す。

地層名	設計 N値	単位体 積重量 γt (kN/m ³)	強度 内 部 摩擦角 φ(°)	定数 粘着力 c (kN/m ²)	変形係数 E (kN/m ²)	透水係数 k (m/s)
盛土 (Bn)	3	18	_	15	2,100	
粘性土 1 (Ac1)	2	18	_	8	800	$1.94 imes 10^{-7}$
粘性土 2 (Ac2)	1	14	_	5	700	3.0×10 ⁻⁸ 以下
礫質土 (Ag)	13	19	30	_	9,100	2.04×10^{-4}
高館安山岩類 (Ta)	215	20	35	150	108,000	_

表 5-1 地盤の土質定数提案値

註)・盛土は礫混じり砂質シルトの土質を示すことから、粘性土として評価した。

・圧密特性は 5-2 項に示し、上表には記載していない。

1)設計N値

N値の傾向を考慮し、地層毎に以下のいずれかを採用して設定した。

・N値のバラツキが大きい場合:「平均N値-標準偏差/2」

(標準偏差/2が1.0以上)

- ・N値のバラツキが少ない場合:「平均N値」 (標準偏差/2が1.0以下)
- ・N値が1深度のみ実施の場合:「測定N値」

N値が 50以上を示す岩盤および貫入量が 30cm 以上を示す未固結層の場合は、30cm での換算N値として提案した。但し、換算N値の上限は 300(貫入量 5cm)とした。 地層境界にN値が跨る場合は、各地層に貫入量を振り分けて 30cm での換算N値と した。

なお、礫および玉石などを打撃した場合は、N値を過大評価する可能性があるため、評価から除外した。

土層	N值	平均值	標準偏差/2	設計N值
盛土	3, 3, 2, 1, 6	3.0	0.9	3
粘性土1	6, 5, 2, 0, 2, 3, 2, 2, 1	2.6	0.9	2.6≒2
粘性土2	6, 3, 10, 2, 2, 1, 1, 1	3.3	1.6	1.7≒1
礫質土	13, 23, 22, 16, 6, 13, 7, 18, 45, 22, 22 7, 5, 29, 22, 13, 39	18.9	5.6	13.3≒13
高館安山岩類	300, 166, 300, 300, 150, 300, 150, 136 300, 187, 214, 250, 100, 300, 300, 250 300, 300, 107, 187, 250, 300, 300, 300 277, 250, 300, 300, 300, 300	249. 1	33. 9	215. 2≒215

例: N値 50 が以上を示す場合: 50 回/50 回打撃時の貫入量(cm)×30(cm)

※以下に示すN値は、礫を打撃した影響を受けた値となっているため、今回の評価から除外した。

・No.1孔:深度 5.15~5.45m(N値 19/30)

- ・No.1孔:深度 6.15~6.45m(N値 18/30)
- ・No.2孔:深度2.15~2.45m(N値19/30)

・No.3孔:深度 3.15~3.45m(N値 11/30)

- 2) 単位体積重量 (γt)
- (1) 盛土、粘性土、礫質土

湿潤密度試験を実施した土層に関しては、試験結果の値に基づいて設定した。湿潤 密度試験を実施していない土層に関しては、表 5-2 に示す「設計要領 第一集(土工編)」 (東・中・西日本高速道路株式会社)に掲載されている土質定数表を用いて設定した。

(2) 岩盤

「設計要領 第二集(橋梁建設編)」(東・中・西日本高速道路株式会社)に示されて いる次式により算出した。

$$\gamma \, t \! = \; (1.\,173 \! + \! 0.\,4 Log \, N) \; \times 9.\,807 \; (k N \! / m^3)$$

N:N値、ここでは設計N値とした

土層	設計N值	設定根拠	γ t(kN/m ³)
盛土	3	盛土 粘性土 締固めたもの	18
粘性土1	2	T5-1:湿潤密度ρt=1.881 (g/cm³)	18
粘性土 2	1	自然状態 粘性土 軟らかいもの	14
礫質土	13	自然状態 礫混じり砂 密実でないもの	19
高館安山岩類	215	$(1.173+0.4Log215) \times 9.807 = 20.65$	20

種類		状 態		単位体 積重量 (kN/m ³)	せん断 抵抗角 (度)	粘着力 (kN/m ²)	地盤工学会 基準 ^{注2)}
盛土	礫および 礫まじり砂	締固めたもの		20	40	0	{G}
	砂	締固めたもの	粒度幅の広いもの	20	35	0	{S}
			分級されたもの	19	30	0	
	砂質土	締固めたもの		19	25	30 以下	{SF}
	粘性土	締固めたもの		18	15	50 以下	${M},{C}$
	関東ローム	締固めたもの		14	20	10以下	$\{V\}$
自然	礫	密実なものまたは粒度幅の広いもの		20	40	0	{G}
		密実でないものまたは分級されたもの		18	35	0	
	礫混じり砂	密実なもの		21	40	0	{G}
		密実でないもの		19	35	0	
	砂	密実なものまたは粒度幅の広いもの		20	35	0	{S}
		密実でないものまたは分級されたもの		18	30	0	
	砂質土	密実なもの		19	30	30 以下	{SF}
		密実でないもの		17	25	0	
状		固いもの(指で強く押し多少へこむ) ^{注1)}		18	25	50 以下	{M},{C}
態	粘性土	やや軟らかいもの(17	20	30以下		
		軟らかいもの(指が容易に貫入) 注1)		16	15	15 以下	
	粘土 および シルト	固いもの(指で強く押し多少へこむ) ^{注1)}		17	20	50 以下	{M},{C}
		やや軟らかいもの(指の中程度の力で貫入) 注1)		16	15	30以下	
		軟らかいもの(指が)	容易に貫入) 注1)	14	10	15 以下	
	関東ローム		14	5(φu)	30 以下	{V}	

表 5-2 土質定数表

注1)N値の目安は次のとおりである。

固いもの (N=8~15)、やや軟らかいもの (N=4~8)、軟らかいもの (N=2~4)

注2) 地盤工学会基準の記号は、およその目安である。

(出典;設計要領 第一集(土工編)東・中・西日本高速道路株式会社 平成 26 年 7 月 P. 1-48)
3) 強度定数

(1) 盛土、粘性土、礫質土

盛土、粘性土、礫質土等の未固結堆積物の場合の強度定数は、次の区分で設定した。なお、盛土は粘性土を主体とした土層であることから、粘性土として評価した。

・粘性土 「 c 地盤」とし、地盤強度は c で代表させる ($\phi = 0$)。

・礫質土 「 ϕ 地盤」とし、地盤強度は ϕ で代表させる (c = 0)。

①内部摩擦角(°)

N値から内部摩擦角 φ を求める。N値から φ を求める提案式には以下のようなものがあるが、N値と φ との相関には、バラツキが大きいとされていることから、建築基礎構造設計指針(日本建築学会)では、平均的な値を与えるものとして大崎の式が記載されている。そのため、ここでは大崎の式を用いて設定するものとした。

 $\phi = \sqrt{12N} + 15$ (丸い粒子で粒度が一様) $\phi = \sqrt{12N} + 20$ (丸い粒子で粒径が不均一、角張った粒子で粒度が一様) $\phi = \sqrt{12N} + 25$ (角張った粒子で粒径が不均一)

	・・・ Dunham の提案式
$\phi = \sqrt{20N} + 15$	・・・ 大崎の提案式
$\phi = 15 + \sqrt{15N} \leq 45^{\circ} \not {\rm theorem} > 5$	・・・ 道路橋示方書の提案式
	N:N値、ここでは設計N値とした

②粘着力

粘着力 c が一軸圧縮強さ qu と以下の関係にあることから、一軸圧縮試験を実施している土層に関しては、qu の平均値から算出し、一軸圧縮試験を実施していない土層に関しては、N値より qu を算出して c を設定した。

なお、N値から qu を求める提案式には以下のようなものがあるが、今回の調査結 果から粘性土は全て沖積層であり、盛土も新しい地盤であることから沖積層と同等 とみなし、沖積層の粘性土を対象とする Terzaghi-Peck の提案式を用いて設定した。

$qu = 12.5 N (kN/m^2)$	 ・・・ Terzaghi-Peckの提案式 (沖積粘土の乱れた試料を用いた結果に基づく提案式)
$qu = 25 N \sim 50 N (kN/m^2) (N > 4)$) ・・・ 竹中・西垣,奥村の提案式 (洪積粘土を用いた結果に基づく提案式)
qu=40+5N (kN/m ²)	
(N値10以下の)	東京湾周辺の海成粘性土を用いた結果に基つく提案式)
$c = 1/2 \cdot qu$	
au:一朝	h 圧縮強さ、N:N値、ここでは設計N値とした

(2) 岩盤

「設計要領 第二集(橋梁建設編)」(東・中・西日本高速道路株式会社)に示されている表 5-3の算定式により算出した。

		砂岩・礫岩 深成岩類	安山岩	泥岩・凝灰岩 凝灰角礫岩	備考
粘着力	換算N値と平均値の関係	15. 2 N ^{0. 327}	25.3 $N^{0.334}$	16. 2 N ^{0. 606}	
(kN/m^2)	標準偏差	0.218	0.384	0.464	log 軸上の値
せん断 抵抗角	換算N値と平均値の関係	5.10logN +29.3	6.82logN +21.5	0.888logN +19.3	log の底は 10
(°)	標準偏差	4.40	7.85	9.78	

表 5-3 換算N値による場合の測定例

(出典 ; 設計要領 第二集(橋梁建設編)東・中・西日本高速道路株式会社 平成 26 年 7 月 P.4-11)

N:N値、ここでは設計N値とした

土層	設計N値	設定根拠	φ (°)	c (kN/m^2)
盛土	3	$qu=12.5\times3$ $c=1/2\times37.5$	_	15
粘性土1	2	T5-1 : qu=16.35 c = $1/2 \times 16.35$	_	8
粘性土 2	1	$qu=12.5 \times 1$ $c=1/2 \times 12.5$	_	5
礫質土	13	$\phi = \sqrt{20 \times 13} + 15$	30	_
高館安山岩類	215	$\phi = 6.82 \text{Log} 215 + 21.5$ c = 25.3 × 215 ^{0.334}	35	150

- 4) 変形係数(E)
- (1)盛土、粘性土、礫質土

孔内水平載荷試験を実施している土層に関しては、試験結果に基づいて設定し、孔 内水平載荷試験を実施していない土層に関しては、N値から変形係数を算出する式に は以下に示すように、孔内水平載荷試験(横方向の応力)との関係と、平板載荷試験 (縦方向の応力)との関係があるが、今回の調査では杭などで用いられる孔内水平載 荷試験との関係から算出して設定した。

E (p) = 700×N (kN/m²) ······ 孔内水平載荷試験との関係

(出典 ; 地盤調査の方法と解説 公益社団法人地盤工学会 平成 25 年 3 月 P.687)

E(s)=2800×N(kN/m²) ····· 平板載荷試験との関係

(出典;道路橋示方書・同解説 Ⅳ下部構造編 社団法人 日本道路協会 平成 24 年 3 月 P. 285)

N:N値、ここでは設計N値とした

(2) 岩盤

「設計要領 第二集(橋梁建設編)」(東・中・西日本高速道路株式会社)に示されて いる下記の算定式により算出した。

 $E = 27.1 \cdot N^{0.69} \times 98.1 \ (kN/m^2)$

N:N値、ここでは設計N値とした

土層	設計N値	設定根拠	E (kN/m ²)
盛土	3	700×3	2, 100
粘性土1	2	孔内水平載荷試験結果より	800
粘性土 2	1	700×1	700
礫質土	13	700×13	9, 100
高館安山岩類	215	$27.1 \times 215^{0.69} \times 98.1$	108, 000

5)透水試験(k)

土の粒度試験結果に基づいて透水係数の概略値を推定する方法には、いくつかの方 法が提案されているが、ここでは最も良く用いられるD₂₀を用いた Creager の図表(表 5-4)により透水係数の概略値を求めた。

D ₂₀ (mm)	k (m/s)	土質分類	D ₂₀ (mm)	k (m/s)	土質分類
0.005	3.0×10 ⁻⁸	粗粒粘土	0.18	6.85 $\times 10^{-5}$	
0.01	1.05×10^{-7}	細粒シルト	0.20	8.90×10^{-5}	微粒砂
0.02	4.00 $\times 10^{-7}$		0.25	1.40×10^{-4}	
0.03	8.50 $\times 10^{-7}$	水口水生こくりし	0.30	2.20×10^{-4}	
0.04	1.75×10^{-6}	祖松ンルト	0.35	3.20×10^{-4}	
0.05	2.80 $\times 10^{-6}$		0.40	4.50 $\times 10^{-4}$	中粒砂
0.06	4.60 $\times 10^{-6}$		0.45	5.80 $\times 10^{-4}$	
0.07	6.50 $\times 10^{-6}$		0.50	7.50×10^{-4}	
0.08	9.00 $\times 10^{-6}$	極微粒砂	0.60	1.10×10^{-3}	
0.09	1.40×10^{-5}		0.70	1.60×10^{-3}	
0.10	1.75×10^{-5}		0.80	2.15 \times 10 ⁻³	粗粒砂
0.12	2.60 $\times 10^{-5}$		0.90	2.80 $\times 10^{-3}$	
0.14	3.80 $\times 10^{-5}$	微粒砂	1.00	3.60 $\times 10^{-3}$	
0.16	5.10 \times 10 ⁻⁵		2.00	1.80×10^{-2}	細礫

表 5-4 Creager によるD20と透水係数kの関係

(出典:地下水ハンドブック株式会社建設産業調査会昭和54年9月 P.687)

土層	設計N値	設定根拠	k (m/s)
盛土	3	土の粒度試験を実施していない	_
粘性土1	2	D1-1:D ₂₀ =0.013 D3-1:D ₂₀ =0.0031 T5-1:D ₂₀ =0.001以下	1.94×10 ⁻⁷
粘性土 2	1	D3-2 : D ₂₀ =0.0012 D5-1 : D ₂₀ =0.0012	3.0×10 ⁻⁸ 以下
礫質土	13	D2-1 : D ₂₀ =0. 29 D5-2 : D ₂₀ =0. 24	2.04×10^{-4}
高館安山岩類	215	土の粒度試験を実施していない	_

5.2 圧密特性の設定

土の圧密試験結果より設定した圧密特性の提案値は表 5-5 に示すとおりであり、以下 に設定根拠を示す。

試料番号	地層名	e∼Log P	mv (m²/kN)	Cv (cm²/d)
T5-1	粘性土 1 (Ac1)	図 5-1 より	0.060 P $^{-0.899}$	170

表 5-5 圧密特性の提案値

1) e-Log P:間隙比と圧密応力の関係

今回実施した圧密試験結果(T5-1)の e~Log P 曲線を図 5-1 に示した。今回実施した圧密試験は1 試料のみであることから、e~Log Pの値をまま提案値とした。

図 5-1 e~LogP曲線

2) mv:体積圧縮係数

今回実施した圧密試験結果(T5-1)のmv~LogP曲線を図 5-2 に示した。今回実施 した圧密試験は1試料のみであることから、mvを図 5-2 のように設定した。 この提案値を数式で表すと以下のとおりとなる。

mV : $0.060 P^{-0.899}$ (m²/kN)

図 5-2 mv~LogP曲線

3) Cv: 圧密係数

今回実施した圧密試験結果(T5-1)のCv~LogP曲線を図 5-3 に示した。提案値を 同図に示した。

Cv : 170 (cm²/d)

図 5-3 Cv~LogP曲線

5.3 地盤の圧密状態の判定

以下に示す計算式より有効土被り圧を算出して表 5-6 に示した。また、今回実施した 圧密試験の圧密降伏応力と試料採取深度における有効土被り圧とを比較して表 5-7 に示 した。

○計算条件

・単位体積重量

地下水位以浅:γ_t(表 5-1 地盤の土質定数提案値より設定)

地下水位以深: γ'= γ_t-10.0 (水中の単位体積重量)

・有効土被り圧の計算 g' v

地下水位以浅:γ_t ×層厚

地下水位以深:γ'×層厚

- ・地下水位 No.5 孔で確認した深度 0.95mで設定した。
- ・検討深度 T5-1 試料の中間深度(3.40m)まで検討を行った

					-	
土質名	深度 (GL-m)	層厚 (m)	単位体積 重量 γ _t	水中単位 体積重量 γ [,]	各層ごとの 有効土被り圧 σ'v	
rtt I p	0.95	0.95	18	_	17.1	地下水面
盛土 Bn	1.00	0.05	—	8	0.4	深度 0.95m
粘性土1 Ac1	3.40	2.40	_	8	19.2	T5-1 試料中間
						「深度 3.40m

表 5-6 有効土被り圧の計算モデルと計算結果

表 5-7 圧密降伏応力と試料採取深度における有効土被り圧との比較表

試料番号	試料採取深度	計算深度	圧密降伏応力 Pc	有効土被り圧	過圧密比
	GL-(m)	GL-(m)	(kN/m ²)	Σσ' _V (kN/m²)	OCR
T5-1(Ac1)	3.00~3.80	3. 40	63.6	36.7	1.6

表 5-7 に示すように、今回の試験結果の圧密降伏応力 Pc と有効土被り圧 $\Sigma \sigma'_V$ を比較 すると、Pc の方が大きく、図 5-4 の判定結果から「III(過圧密)」という結果になっ た。

一般的な正規圧密地盤の沖積粘性土では、過圧密比 $OCR(Pc/\sigma'_v)=1.0\sim1.2$ 程度と言われているが、本調査地の場合は OCR=1.7 であり、かなり大きい過圧密地盤となった。

ただし、これは今回の試験試料が砂質土を混入する不均質な試料であることが影響し ている可能性がある。また、試験試料の分布深度が浅い沖積層であるため、年代効果な どの影響をあまり受けていないものと考えられることから、今回の調査地は「正規圧密 〜過圧密」の範囲内であるものと判断できる。

(出典:小規模建築物基礎設計指針 社団法人 日本建築学会 2008 年 2 月 P.81) より一部加筆

I Pc< d_V: 圧密未了(沈下が大きい)
 Ⅱ Pc= d_V: 正規圧密(建物荷重分の沈下)
 Ⅲ Pc> d_V: 過 圧 密(沈下が小さい)

5.4 建築物の支持層および基礎工法について

「日本建築学会,建築基礎構造設計指針,2001 改定,2001 年 10 月」では、基礎構造を 選定する上での基本原則として、以下の事項が挙げられている。

① 建物の要求性能を満たす(鉛直・水平)支持性能と沈下・変形性能が確保できること

- ② 施工性で優れ、施工品質に対する信頼性が高いこと
- ③ 敷地周辺への環境保全上の影響が少ないこと
- ④ そのうえで経済性に優れていること

以前の建築基礎構造設計指針では、「支持地盤選定の原則として、上部構造物の特性、 想定し得る基礎の形式、敷地の状況および地盤条件などから見て、建物そのものならび にその機能に有害な障害を生じないように建物を確実に支持し得る地盤を選ぶこと」と 記述されていたが、現在の建築基礎構造設計指針では、上記のように支持層に関する明 確な記述はない。

上部構造の特性に規定される基礎の許容沈下量や許容変形量が不明な段階においては、 一般的に良質な支持層としてはN値 50以上の層が 5m程度以上連続する地層が望ましく、 構造物の重要性および規模にもよるが、最低でも 3m程度の層厚が必要と考えられてい る。

また、「道路橋示方書・同解説IV下部構造編(平成14年3月):社団法人日本道路協会」 によれば、支持層としては、粘性土層ではN値20程度以上(一軸圧縮強さquが0.4N/mm² 程度以上)、砂層および砂礫層であればN値30以上あればよいとされている。ただし、 砂礫層では礫を打撃してN値を過大に評価する傾向があるため、支持層の決定には十分 な注意が必要であるとされている。

今回の調査結果から、N値 50 以上が 5m以上連続する良質な支持層としては、以下に 示す深度 9.15~13.25m以深に分布する安山岩および火山角礫岩となる。

No.1 孔	深度 9.70m	(標高 11. 4 7m)	高館安山岩類	安山岩(Ta)
No.2 孔	深度 9.15m	(標高 9.12m)	高館安山岩類	安山岩(Ta)
No.3 孔	深度 9.35m	(標高 7.89m)	高館安山岩類	安山岩(Ta)
No.4 孔	深度 5.50m	(標高 13.19m)	高館安山岩類	火山角礫岩(Ta)
No.5 孔	深度 13.25m	(標高 4.00m)	高館安山岩類	安山岩(Ta)

基礎形式としては、支持層の深度が深いことから杭基礎が考えられるが、上部構造物 からの荷重や上部構造物の特性などを考慮して詳細な検討を行い、最終的には、地盤、地 下水条件の他に、建築物の荷重・規模、重要性、経済性、施工性、周辺環境条件等を考慮 の上、基礎形式を選定することが望ましい。

5.5 設計・施工上の留意点について

 ・基礎形式に杭基礎が選定された場合には、図 5-5 に示すように、支持層上面の分布深度 が東から西方向へ傾斜していることや、岩盤の上面に凹凸の可能性があることなどから、 設計時に杭長を決定する際にはこれらの事を考慮する必要がある。また、施工時には、 設計上の予定杭長に関わらず、地盤状況に応じて杭長を最終的に決定する必要がある。
 参考までに図 5-6 に調査地周辺の支持層上面等高線図を示した。

図 5-5 地質断面図

図 5-6 調査地周辺の支持層上面等高線図

- ・今回の調査では、深度 0.50~3.75m間の盛土(Bn)層内で地下水位を確認した。この盛土 (Bn)は、一般的に透水性が低いとされている砂質シルト層であるが、不規則に砂を挟在 するなど不均質な砂質シルトであるため、透水性が高いとされている砂質土を水みちと する湧水が生じる可能性も考えられる。したがって、基礎掘削が地下水位以下まで及ぶ 場合には、このような事態が生じる可能性に配慮しておくことが望ましい。
- ・今回の調査から、調査地に分布するAc1層は正規圧密状態であると判断できる。よって、Ac1層に関しては新規の荷重分だけ沈下するものと考えられるが、調査地においてはAc1層およびAc2層とも砂質土を多く混入することから、基礎工法および荷重の規模によっては、大きな沈下は生じないことも考えられる。基礎を選定する際には、 圧密沈下なども考慮した検討が望まれる。

なお、参考までにNo.5 孔をモデルとした沈下検討を次ページに示した。

5.6 造成盛土の圧密検討

調査地には、軟弱な沖積粘性土層(Ac1、Ac2)が厚く堆積していることから、以下に造 成盛土を行った際の沈下量について試算した。なお計算条件は以下のとおりとした。

【計算条件】

- ・地盤モデル:土質試験を実施したボーリング No.5 孔をモデル地盤とする。
- ・圧密特性、その他の土質定数 :5.1 項、5.2 項で述べた採用値とする。
- ・水中単位体積重量は、単位体積重量から水の単位体積重量 10kN/m³を差し引く。
- ・地下水位 : ボーリング調査時に確認した水位とする。=GL-0.95m
- ・ 増加荷重 : 高さ 1.0m、 γ t=19kN/m³の盛土に相当する 19kN/m²とする。
- ・圧密対象層:沖積粘性土層(Ac1、Ac2)のみとする。
- ・排水条件 : 下位層が沖積砂礫層であることから、両面排水とする。
- ・増加荷重に対する応力分散、および沈下に伴う増加荷重の浮力は考慮しない。

1) 圧密沈下量の計算

【計算式】

圧密沈下量求める式には、 $\Delta e 法 (e \sim Log P の関係を用いる方法)、mv を用いる方法、Cc を用いる方法があるが、ここでは「建築基礎構造設計指針」に基づいて、 <math>e \sim Log P の関係から求める \Delta e 法と、mv を用いる方法によって計算する。$

$$Sc = \frac{e_0 - e_1}{1 + e_0} \cdot H$$

ここに、

- Sc:一次圧密沈下量(m)
- e_0 : 圧密層の盛土前の鉛直有効応力 ($\Sigma \sigma'_v = p_0$) での初期間隙比
- e1: 圧密層の盛土荷重による圧密後の間隙比で、e~LogP曲線における

圧密層中央深度の盛土後の鉛直有効応力 p₀+Δp に対応する間隙比

H: 圧密層の層厚(m)

(出典;道路土工軟弱地盤対策工指針(平成24年度版)社団法人日本道路協会平成24年8月 P.125)

②mv を用いる式

 $Sc = mv \cdot \Delta p \cdot H$

ここに、mv:体積圧縮係数(m²/kN)

△p: 圧密層の中央部深度の盛土荷重による鉛直有効応力の増分(kN/m²)

H : 圧密対象層厚 (cm)

(出典;道路土工 軟弱地盤対策工指針(平成 24 年度版)社団法人日本道路協会 平成 24 年 8 月 P. 126)

【計算結果】

① Δ e 法による圧密沈下量の計算

表 5-8 に圧密対象層中央深度までの有効土被り圧を示し、図 5-7 には採用 e ~ Log P 曲線を示した。

土質名 (層厚)	深度 (GL-m)	層厚 (m)	単位体積 重量 γ _t	水中単位 体積重量 γ'	各層ごとの 有効上載圧 σ'v	
D	0.95	0.95	18	_	17.1	地下水面
Bn	1.00	0.05	—	8	0.4	深度 0.95m
Ac1+Ac2	3.75	2.75	_	8	22.0	Ac1+Ac2 中央深度
	有効土被	モり圧(Σ	$\sigma'_{V}=p_{0}$		39.5	深度 3.75m

表 5-8 圧密対象層中央深度までの有効土被り圧

図 5-7 採用 e~LogP 曲線

上記の条件により計算した結果を表 5-9 に示した。

表 5-9 企法による圧密沈下量の計算結果

地層	層厚	有効土被り圧	初期間隙比	増加応力	最終間隙比	沈下量
	H(m)	po	e ₀	Δp(kN/m²)	e ₁	Sc(m)
Ac1+Ac2	5.50	39.5	1.120	19	1.040	0.207

```
Sc = (1.120 - 1.040) / (1 + 1.120) \times 5.50 = 0.207
```

②mv 法による圧密沈下量の計算

(1) 体積圧密係数

mv = 0.060 P^{-0.899} (m²/kN)

$$\Box \Box k = P = P0 + \frac{\Delta p}{2} = 39.5 + \frac{19}{2} = 49.0$$

(2) 圧密沈下量 Sc

 $Sc = 0.060 \times (49.0)^{-0.899} \times 19 \times 5.50 = 0.189 (m)$

(3) 圧密沈下量の計算結果のまとめ

計算手法によって、若干の差異はあるが、盛土中央部で20cm 程度の圧密沈下 が生じる結果となった。

Δe法 20.7cm mv法 18.9cm

2) 圧密沈下時間の計算

【計算式】

沈下時間は以下の計算式を用いて算出する。

$$t = D^2 / cv \cdot Tv$$

ここに、

- t :沈下時間 (day)
- Tv : 圧密度に応じた時間係数 (図 5-8 より圧密度 90%のとき、0.848)
- D: 排水距離(cm) 両面排水の場合、圧密対象層厚の 1/2
- cv : 圧密係数 (cm2/d)

図 5-8 圧密層全体での平均圧密度Uと時間係数 Tv の関係

(出典;道路土工 軟弱地盤対策工指針(平成 24 年度版)社団法人日本道路協会 平成 24 年 8 月 P. 128)

【計算結果】

D = 5.50 m/2 = 2.75 m = 275 cm $Cv = 170 \text{cm}^2/\text{d}$

・圧密度 90%に達するまでに要する時間

t = $275^2/170 \times 0.848 = 377$ 日 = 1年と12日

・圧密度 90%時の沈下量

 $S_{90}=20.7 (cm) \times 90 (\%) = 18.6 (cm)$

・圧密度 90%以降に生じる沈下量(残留沈下量)

S = 20.7 (cm) - 18.6 (cm) = 2.1 (cm)

図 5-9 沈下経過時間

3)まとめ

以上のように、この条件での試算では、盛土高1.00mの盛土で、盛土中央部において 20cm 程度の圧密沈下が生じる結果となった。実際には沈下に伴う浮力の発生などによ り、沖積粘性土層に伝わる増加荷重はもう少し小さいものとなるため、実際の圧密沈下 量はここでの試算結果より少なくなる。また、圧密度90%まで進めば、残留沈下量は 2cm 程度となり、駐車場やグラウンドなどであればオーバーレイ等による対処も可能と 考えられる。

実際の設計・施工に際しては、必要に応じて荷重増加を生じさせない配慮、若しくは 圧密沈下に対する対策を考慮しておくことが望ましい。

巻末資料

調 査 名 柴田斎苑地質調査委託

事 業 ・ エ 事 名

ボーリングNo. 5 7 4 0 0 5 9 9 0 0 0 シートNo.

発注機関 仙南地域広域行政事務組合 調査期間 平成27年9月14日~平成27年9月17日 東 経 140°44'45.444 調査業者名 東北ボーリング株式会社 電話022-288-0321 主任技師 富原淳 現場人 代理人 小林大介 コア 鑑定者 小林大介 ボーリング 生 ボーリング 孔口標高 21.17m 角 180° 生 方 北< ヴ 地 0° 鉛 水平0° 鉛 作用 試錐機 東邦製 D-1型 ハンドマー 客下用 半自動型	ボ・	- IJ	ン	グ名	No. 1			調査位置	宮城県柴田郡	村田町	盯大字袑	召辺判	自沢 地内			北	緯	38°	04'	34. 3776)″
調査業者名 東北ボーリング株式会社 電話022-288-0321 主任技師 菅原淳 現場 代理人 小林大介 コア 鑑定者 小林大介 ボーリング 近責任者 孔口標高 21.17m 180° 21.17m 方 北0° 200 地 0° 金 地 0° 金 株平0° 金 開用 話 錐機 東邦製 D-1型 ハママー 落下用具 半自動型	発	注	機	関	仙南地域広域行	亍政事務組合				調査	ē 期 間	平成	27年 9月14日~平	成27年 9	9月17日	東	経	140°	44'	45. 4448	3″
A ロ標高 月 180 [°] 方 北 0 [°] 地 0 [°] 使 1 1.17m 1 1.17m 1.17m 5 1.10 [°] 1.10	調	査	業者	者 名	東北ボーリング移 電 話 022-28	転会社 38−0321		主任技師	菅原 淳		現 代 理	場 人	小林 大介	コ 鑑 定	ア 者 小林 大	:介	ボ グ	ー リ 責 任	ン 者	訪城 栄	
	孔		標	高	21.17m	角 ^{180°} 上	, ^{90°} 方	270° / 12 0° 90°	地 0° 盤 ^{水平 0°}	使 用	試 錐	機	東邦製 D-1型		ハ ン 落 下	/ マ ー - 用 具	半自重	멘			
	総	掘	進	長	15.10m	度 0° €	。 0° 向	西 東 180°南	勾 直 配 90 [°]	機種	エンシ	ジン	ヤンマー製 NFD-12	2	ポ	ンプ	東邦集	뷛 BG-3	3B型		

火 原 度 次 対 次 次 次 次 100-000 近 11 次	標	標	層	深	柱	土	色	相	相	記	粒	孔		標	進	1	貫	入	試	験	Ì		原	位	活 置	験	試制	科採	取	室	掘
(1) (1) (2)<	R	直	回	库	11-	質		対	· 対		反試験に上	内水位/	深	10cm毎 打撃回	の 数 重	打撃可		Ν			値		深	試 及	験 び 糸	名	深	試料	採取	内	進
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		[1]	/子	R	1/	X		密	稠		る土質	/ 測定日	度	0 10	20紫 ~ 了	数/ 貫1							度				度	番	方	試	月
International of the second	m	m	m	m	X	分	調	度	度	事	込	月	m	1020	ノ 30量		0 1	0 20	30	40) 50	60	m				m	号	法	験	日
11.33 3.80 3.80 3.80 3.80 4.13 1 2 3.60 3.80 4.13 1 2 5 4.13 1 2 5 4.13 1 2 5 6 4.13 1 1 5 5 7 4.13 1 1 2 5 5 7 4.13 1 1 1 5 5 7 4.13 1 1 5 5 7 4.13 1 1 1 5 5 7 4.13 1	1					盛土	褐灰			砂岩および凝灰岩などの掘削土を 主体とした、礫混じり砂質シルト の盛土である。 全体に径5~30mmの亜角~亜円礫 を混入し、稀に径40~60mmの礫も 点在する。 不規則に軽石片および雲母片を伴 う、火山灰質砂を混入する。 深度3.00m付近から少量の 有機物を混入する。		9/15 3 75	1, 15 1, 45 2, 15 2, 45 3, 15			3/30 30 3/30 3/30	3 ¢ 3 ¢ 2 ¢													-	9
14.17 3.20 7.00	4 5 6	17.37	3.80	3.80		礫混じ り砂 シルト	褐灰		中位の	全体に細砂から中砂をレンズ状に 混入する不均質なシルトである。 径5~40mmの亜角~亜円礫を混入 する。 不規則にくり貫きコア長で50mmほ どの安山岩礫を混入する。 深度5.00m付近までシルトを多く 混入する。		<u> </u>	4. 15 4. 45 5. 15 5. 45 6. 15 6. 45	1 2 7 4 4 6	3 3 8 1 8 1 3 8 1 3	6 30 19 30 18 30	6 19 18										<u>6. 15</u>	D1-1	Θ	比含粒	
10 10	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14. 17	2 2 70	7.00		礫混じ りシル ト	黒褐		柔らかい	径5~30mmの礫を混入する不均質 なシルトである。 所々に径50mmほどの礫が点在する。 不規則にレンズ状に砂を混入し、 深度8.00m付近から砂の混入が多 くなる。			7. 15 7. 45 8. 15 8. 45 9. 15 9. 45	$\begin{array}{c c} 1 \\ 15 \\ 1 \\ 1 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$	4 3 1 3 5 1 5	6 30 3 30 10 30	6 3 10												************************************	位 夜性 塑性	915
$\begin{bmatrix} 15 & 6.07 & 5.40 & 15.10 & & & & & & & & & & & & & & & & & & &$	10 11 12 13 14 15	6. 07	7 2. 70	<u>9</u> , 7(安山岩	赤褐四 ~ 緑青四			コアは送水掘りにより礫状~棒状 で採取される。 コアの硬さは、ハンマーの普通~ 強打で割れる程度である。 全体に亀裂が発達し、亀裂面は黒 褐色で粘土および砂を挟在する。 亀裂周辺の安山岩は赤褐灰色を呈 し、新鮮部は緑青灰色を呈する。 石英粒を混入し、微細な石英粒の 密集が線状に認められる。 深度10.00~11.00m付近で若干の 漏水が認められる。			9. 45 10. 00 11. 00 11. 00 12. 00 12. 00 13. 00 14. 00 14. 10 15. 05 15. 10	50 5 50 8 50 4 50 5 5 50 5 50 5 5	5 5 5 5 5 5	50 5 50 9 4 50 5 50 5 50 5 50 5	50 21 50 21 50 21 50 21 <u></u> 50 21 <u></u>													-	916

調 査 名 柴田斎苑地質調査委託

事 業 ・ エ 事 名

ボーリングNo. 5 7 4 0 0 5 9 9 0 0 0 シートNo.

ボ	— リ	ン	グ名	No. 2	調 査 位 置 宮城県柴田郡村	T田町大字沼辺粕沢 地内 北 緯 38°04'33.6924"
発	注	機	関	仙南地域広域行政事務組合	Ē	周査期間 平成27年 9月 9日~平成27年 9月14日 東 経 140°44'44.7667"
調	查	業 者	前名	東北ボーリング株式会社 電 話 022-288-0321	主任技師 菅原 淳	現 場 代理人 小林 大介 二 ア 鑑定者 小林 大介 ボーリン が責任者 結城 栄信
孔		標	高	角 180 [°] 方 18.27m 上 90 [°]	北 0° 270° 90° 地 0° 水平 0° 鉛 →	使 用 試錐機 東邦製 D-1型 バンマー 落下用具
総	掘	進	長	14.06m 度 ^下 0° 向	西 東 勾 直 180° 南 配 90°	機 種 エンジン ヤンマー製 NFD-12 ポンプ 東邦製 BG-3B型

標	標	層	深	柱	土	色	相	相	記	粒	孔		根	٣	準	貫	入	`	試	験		原	位	置言	弐 験	試	料採	取	室	掘
					質		対	対		反試験に	内水位	深	10c 打雪	m毎⊄ 隆回娄) 打		N			値		深	試	験	名	深	試	採	内	進
尺	高	厚	度	状	区		密	稠		に よる 土 質	/ 測 定	度	0	102	□ □ 数 / 貫							度	及	び;	結果	度	料番	取 方	試	月
m	m	m	m	図	分	調	度	度	事	(区 分	月日	m	10	203	入 0 量	0	10	20	30	40 5	0 60	m				m	号	法	験	日
1	16. 57	7 1.70	1. 70		盛土	黄褐			全体に径5~30mmの亜角礫を混入 する、礫混じり砂質シルトの盛土 である。 不規則に砂を主体とする。 軽石片および雲母片が点在する。		9/ 9 1.3! ⊉		$\frac{1}{30}$			- 10						-								
2 1 1 1 1 3					礫混じ り砂質 シルト	黒褐		中位の	全体に細砂から中砂をレンズ状に 混入する不均質なシルトである。 径5~30mmの亜角~亜円礫が点在 し、稀に径50mmほどの礫を混入す る。			2. 1! 2. 4! 3. 1!	5 5	6	$ \begin{array}{c c} 8 & 19 \\ 30 \\ 2 & 5 \\ 30 \\ 30 \\ $	- 19 - 5 ¢														
	<u>14. 17</u> 13. 22	7 2.40	<u>4. 10</u> 5. 05		礫混じ りシル ト	黒褐		非常に矛	深度3.10m付近から径2~10mmの 礫が主体となる。 径2~20mmほどの礫を混入する、 不均質なシルトである。 不規則に砂を混入する。			3. 4! 4. 1! 4. 4!		1 15	2 30															
				0 • 0 • 0 • • • • • • • • • • • • • • • •				ふかい	径5~20mmの亜角~亜円礫が主体 である。 礫種は硬質な安山岩礫が主体で、 基質はシルトを混入する、中~粗			5. 4 5. 4 6. 1	5 10	8	5 23 30	13 23										<u>6. 15</u> 6. 45	D2-1	Θ	比含此	مره سیاسیاسیا
- 7 				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	シルト 混じり 砂礫	黄灰	中位の		やである。 軽石片および雲母片を伴う、火山 灰質砂を混入する。 深度8.00m付近からシルトの混入 が多くなり、シルト主体のところ			7. 1! 7. 4! 8. 1!	5 6 5 4	7	$9 \frac{22}{30}$ 4 16 30	22 16													粒度	
9	9. 12	2 4. 10	9. 15						し転められる。			8. 4! 9. 1! 9. 2!	5 5 5		50	- 50UL					\$									
10						赤褐灰	Z		コアは送水掘りにより礫状~棒状 で採取される。 コアの硬さは、ハンマーの普通~			10. 09 10. 10	5 40 5 50_	10	50 11 50	- 50UL					Þ									56 0100000000000000000000000000000000000
12					安山岩	2			短月で割れる程度でのる。 全体に亀裂が発達し、亀裂面は黒 褐色で粘土および砂を挟在する。 亀裂周辺の安山岩は赤褐灰色を呈 し、新鮮部は緑青灰色を呈する。			11. 0 12. 0 12. 0	5 5 0 50 3 8		5 50 8	- 5001 - 5001					, ,									
13						緑青灰	Z		石英粒を混入し、微細な石英粒の 密集が線状に認められる。 深度13.00m付近は亀裂が多い。			<u>13. 0</u> 13. 12	5 2 7		50 7	- 50 <u>0</u> E					Þ									ہ ایریاری
14	4. 21	4.91	14.06									<u>14.00</u> 14.00	0 <u>50</u> 6 6		50 6	- 50 0±					•									12
																										-				

調 查 名 柴田斎苑地質調査委託

事 業 ・ エ 事 名

ボーリングNo. 5 7 4 0 0 5 9 9 0 0 0 シートNo.

ボー	-リ:	ング	名 N	lo . 3							調査位置	宮城	県柴	田郡	村田	町大	字沼辺	2粕沢	尺 地内					北		緯 3	8°04	4'3	3. 37	'09 ″	
Ê	注	機	関	山南	地域	広域行	亍政事	■務/	組合	<u> </u>					調査	<u> </u>	間平	成27	午 9月2	3日~立	平成27 ⁴	手10月	1日	東		経 14	0° 44	4'4	13.48	395 ″	
問:	査 業	者:	名 霍	刺动 1	ボーリ 話 C	ング彬 022-28	标式会 ³⁸⁻⁰³	社 21			主任技師	菅原	淳			現 代	: 理 :	場 人	林 大介		コ 鑑 ご	ア 定 者	小林 ナ	介		ボ ー グ 責	リ ン 任 者	結功	成 💈	栄信	
Ŀ		標	高 1	7.2	4m		角	180 上	` 	方	270° 120° 90°	地盤	0° 水 鉛 Г	<平 0° →	使 用	試	錐枋	幾 東	「邦製 D−	型			ハ) 落 ⁻	ノマ F 用	ー 具 ^半	自動型					
忩	掘	進	長 1	4. 0	3m		度	下 0°		ナ ⁹⁰ 0° 向	西 東 180° 南	勾 配	直 90°		│ │ 種	ΤÌ	ノジン	, +	ンマー集	Į NFD−	12		ポ	ン	プ 東	邦製 B	G-3B	型			
標	標	層	深	A	柱	土	色	相	相		記		米	立孔		;	標	進	貫	入	試	験		原	位	置試り	倹	試彩	↓採	取	室
						質		対	対				の言題に	之武 (文武) 人 人	可 く 済 た	_展 10 打	cm毎0 撃回数	〕打 数		Ν		僱	ī	深	試	験	名	深	試	採	内日
尺	高	厚	度		状	X		密	稠					- ころ- 測 -	度	e 0	102	回 0数 /				TE	-	度	及	び 結	果	度	料	取	試
m	m	m	m		図 	分	調	度	度		事		TEF I2 ク	夏く日	≝]] n		2 0 3	ℓ 貫 0 量						m				m	畨	万 法	験
						盛土	黄褐			全体に径5~ する、礫混	・30mmの亜角礫 じり砂質シルト	を混入 〜の盛土	:	0.	50				0 1	0 20) 30	40	50 6	<u> </u>					-		
	$\begin{array}{c} 1 & 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 1 \\ 1 \\ 2 \\ 4 \\ 5 \\ 5 \\ 6 \\ 7 \\ 3 \\ 3 \\ 9 \\ 7 \\ 8 \\ 7 \\ 8 \\ 9 \\ 7 \\ 8 \\ 7 \\ 8 \\ 9 \\ 7 \\ 8 \\ 7 \\ 8 \\ 8 \\ 7 \\ 8 \\ 7 \\ 8 \\ 8$	44 2.8 44 1.0	.5 <u>3</u> .			僕りシ 僕りト シ昆砂 足砂ル 混シ ルじ礫 トり	黑褐 黒褐 暗灰 黄灰	緩い	非常に柔らかい 非常に柔らかい	軽 全混径す深が。 径不不少 径で礫基砂軽灰深付石 体入2る度点 22均規量 5あ種質で石質度近片 にす10mmの ~53.在 ~質則の ~5るははあ片砂5.はお 細るの のし 10mに有 00mの 質ル。よ混mルよ 砂不の m、 間シレ機 の 質ル。よ混mル		<u>しょぎがまたで</u> す。記でした。またした。 する、状る点、どれていたいで、したいで、したいで、したいで、したいで、したいで、いたいで、いたいで、				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 1 4 - 1 2 4 1 6 17 2	$\begin{array}{c} 2\\ 30\\ 1\\ 35\\ 1\\ 1\\ 30\\ 2\\ 30\\ 1\\ 30\\ 2\\ 30\\ 3\\ 30\\ 3\\ 30\\ 3\\ 30\\ 2\\ 7\\ 30\\ 3\\ 30\\ 3\\ 30\\ 5\\ 5\\ 18\\ 30\\ 5\\ 5\\ 18\\ 30\\ 0\\ 6\\ 26\\ 6\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$	2 9 1 0 1 1 2 0 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1	»				2.00 2.60 2.60 				<u>2. 15</u> 2. 50 <u>4. 15</u> <u>4. 45</u> D)3-1	□ □ □	Lta 立 友 君 重 水 度 性 性 ・
1(1) 1) 1; 1; 1, 1, 1, 1,	2 3 4 <u>3. 2</u> 5	21 4.6	<u>8 14.</u>			安山岩	赤褐灰			コでコ強深く砂深コ亀し石密 ア採ア打度、を度ア裂、英集 は取ので12.0裂在2の周新粒が 送さ硬割の畑の部混状 水れされいの面すい取の部混状	掘るはる付黒。近る大きなは入に認いて、い度ま名、行黒。近る山体し、い度ま名、からは灰物し、というないたち、いたまでで、いたまでで、いたでで、いたでで、いたでで、いたので、いたので、いたので、いたので、いた	く) 裂と ね 反晶 本 通 多む 株 をる粒 状 ~ 多び 状 呈。の	<u> </u>		10 10 11 11 12 12 12 13 13 13 14 14	0.00 0.03 0.03 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.05 0.04 0.05 0.05 0.04 0.05			- 50 21 - 50 21 - 50 21 - 50 21 - 50 21												

F		
F.I.I.I.I.I		
F 16		

名 柴田斎苑地質調査委託 調 査

事 業 ・ エ 事 名

ボーリングNo. 5 7 4 0 0 5 9 9 0 0 0 シートNo.

ボ・	- IJ	レン	グ名	No. 4	4					調査位置	宮城	県柴日	日郡木	打田町	「大字	沼辺	粕沢	地内						北	緯	: 38°	04'	34.9	294″	,	
発	注	桡	き しょうしん ひょうしん しょうしん しょうしょう しょうしん しょうしょう しょうしん しょうしん しょうしょう しょうしん しょうしん しょうしん しょうしょう しょうしょう しょう しょうしょう しょうしょう しょうしょう しょう	山正	南地域	成広域行	亍政事	₮務;	組合					調査	期間] 平度	戎27	年 9月	24日~	平成2	7年 9	月26日		東	経	140°	44'	43.2	851″	,	
調	査	業:	者 名	東都電	レボー! 話	リング杉 022-28	転会 38−03	社 21		主任技師	菅原	淳		3	現 代 現	場型人	小	林大	介	コ 鑑	定	ア 者 ^{小材}	卞 大〉	介	ボグ	ー リ う 任	ン お	城	栄信		
孔		桪	見 一 一	18.	69m		角	180 上		方 北 0° 90	地盤	0° 水 ¹ 鉛	₽ 0°	使 用	試金	隹 機	東	邦製 D-	-1型				ハ ン 落 下	マ - 用 身	■ 半自	動型					
総	掘	迫		11.	04m		度	下 0°		西 180°南	勾 配	直 90°		機 種	エン	ジン	ヤ	ンマー	製 NFD	-12			ポン	ノフ	『 東邦	製 BG-:	3B型				
標	柞	票	層	深	柱	土	色	相	相	記		粒	孔		楞	Į	準	貫	入	試	E	検		原	位 置	試験	試	料採	取	室	掘
						質		対	対			度試験に	内水位	深	10cm 打撃	m毎の M回数	打撃		N			値		深	試		深	試	採	内	進
尺	Ē	笥	厚	度	状	区		密	稠			による十	/ 測	度	0	1020	回)数 /		1			Ш		度	及び	結 果	度	料	取	試	月
m	r	n	m	m	X	分	調	度	度	事		「質区分	定 月 日	m		<pre></pre>	貫入量							m			m	番号	万法	験	日
									 砂岩お 主体と の感+	よび凝灰岩などの した、礫混じり砂 である	屈削土を 質シルト							0	10 2	20 3	30 4	0 50	60								
	1				$\left \right\rangle$	盛土	黄褐		全混入点で	径2~30mmの亜角~ し、稀に径50mmほの る。	亜円礫 どの礫も		9/24	1.1 /// 1.4	5 2 5	2 2	<u>6</u> 30	6 0													
	2 1	6. 54	2. 15	2. 15						、有機物、炭化物、 <u>する。</u> 細砂から中砂をレン			<u>_</u>	2.1	5 <u>1</u> 15 -	1 15	2 30	2 ¢													
	3					礫混じ り砂質 シルト	黒褐		柔 混入す 深度3. の礫が い ら径5~	る不均質なシルト 00m付近までは径2 主体で、深度3.00r ~30mmの礫が主体と	である。 ~10mm n付近か なる。			3.1 /// 3.4	5 1 5	1 1	30	3 🗕													1.1.1
	4 1	<u>3. 99</u>	2. 55	4. 70		シルト		非	軽右片	および有機物を混 Ommの亜角~亜円礫	いする。			4.1	5	1 1	30	3													
	6	3. 19	0. 80	5. 50		混じり 砂礫 	黄灰	常に緩い	である 、礫種は <u>基質は</u>	。 硬質な安山岩礫が 中~粗砂である。	È体で、			5.4	5 20	30	22 30	22		8											8 1111111
	7						赤褐灰		コアは 状で採 短棒状	送水掘りにより礫 取される。 で採取された礫の	犬~短棒 更さは、			6.2	9 209	4	50 14 50	50以上 50 以上													
	8					火山角			ハンマ度はそれ	ーの普通~強打でき る。 20~300mmの安山岩 ろ	削れる程 礫が主			7.0	8 0 0 50 6 6		506	50 以上													
	9					礫岩′′			基質は 灰岩で 不規則	る。 軽石片や細礫を混) ある。 に亀裂が認められ、	くする凝 亀裂面			<u>9.0</u> 9.0	0 50 5 5		50	50 以上												.	9
	0						褐灰		は黒褐 る。 深度9. アで採	色で粘土およひ砂 00m付近から短棒 取される。	を挟在す ~棒状コ			<u>10, 0</u> 10, 0	<u>0 50</u> 5 5		50 5	50 以上													
	1	7.65	5. 54	11.04						-				<u>11.0</u> 11.0	0 <u>50</u> 4 4		<u>50</u> 4	50 以上													9 26
	2																														T
Ē 1	3																										-				-

調 査 名 柴田斎苑地質調査委託

事 業 ・ エ 事 名

ボーリングNo. 5 7 4 0 0 5 9 9 0 0 0 シートNo.

ボー	- リン	ングネ	8	No. 5						調査位置	宮城県	県柴田 	日郡木	†田町 	大字	沼辺	粕沢	地内]				北		緯	38°	04' 3	34.15	501″	
発	注	機	 男	仙南地:	域広域征	亍政事	事務	組合	ì				İ	調査	期間	平周	成274	年10月	5日~	·平成27	年10月	8日	東		経	140°	44' 4	43. 38	373″	
調	査 業	者名	۲	東北ボー 電 話	・リング校 022-28	朱式会 38-03	社 821			主任技師	菅原	淳		Ŧ ſ	見 七 珥	場して	小	林 大	介	コ鑑	ア 定 者	小林 ナ	介		ボ - グ す	ー リ : 責 任 i	ン 者	城	栄信	
孔		標	高	17.25m		角	180 		方	270° 北 0° 90°	地盤	水	₽0°	使 用	試銷	隹 機	東	郫製 D	-1型	·	·	ハ ン 落 1	ンマ F 用	— 具 ^半	上自動	型	·			
総	掘	進	Ę	18.05m		度	۲ ٥°			西 東 180° 南	勾 配	直 90°		機種	ェン	ジン	ヤ	ンマー	製 NFD	-12		ポ	ン	プ 耳	東邦製	BG-3I	3型			
標	標	層	汐	^梁 柱	土	色	相	相		記		粒度封	孔内	Vert	標 10.cm	<u></u>	進	貫	入	試	験		原	位	置 試	: 験	試料	⇒採	取	室携
_					質		対	対				職験に	水位	深	打撃	i血() :回数	1 撃 回		Ν		値		深	武	験 び #	名 = 里	深	試	採	内進
尺	高	厚	月	度 状	X		密	稠				よる十	測	度	0 1	020)数						度	X	0. /		度	料	取	試 月
						÷⊞	±	ш		+		「質区へ	定 月		{	<pre>{</pre>	貫入											奋	力	EA F
m	m	m	n	n 🗵	ゴ	前	度	度	砂岩および	事 疑灰岩などの掘	削土を	分		m	102	2 0 3 0) 重	0	10	20 30) 40	50 60	0 m				m	方	法	顾 ⊨
1	16.2	1.00) 1	1.00	盛土	黄褐			王体とした、 の盛土であ 軽石片、有	、礫混じり砂質 る。 幾物、炭化物、	シルト 雲母片		10∕5 0.95 ⊻	i 		1	2	0 -												
2	2							非常	☆点在する。 全体に細砂/	。 から中砂をレン	ズ状に			1.4	<u>15</u>	1	30	2 @	······				_							
	3				2候混し り砂質 シルト	黒褐		に柔らか	混入する不 径5~30mmの する。	匀質なシルトで)亜角~亜円礫ァ	ある。 が点在			2.4	20		30	2 🔶									3.00			
	13.3	5 2.90) 3	3. 90				い	深度2.50mf い。	寸近まで礫の混	人が多			3. 4	30		30	10									3 80	T5-1		北重 含水 粒度 夜性
_ 4	1				Ž 			非常	径2~20mmほ	どの礫を混入す	する、			4. 1! 4. 4!			1 30	1¢									0.00		- - 	密度 一軸 王密
- 5	5				● 礫混じ 」りシル 」ト	黒褐		に柔らか	不均質なシル少量の有機不規則にレン	ルトである。 物を混入する。 ンズ状に砂を挟	在する			5. 18	1 30		1-30	10									5. 15 5. 45	D5-1	Θ	比重 含水
6	6 10. 7	75 2.60) 6	<u>5. 50</u>	• •			iv	0					6.1	1 30		1-30	1											7	粒度 夜性 塑性
- 7	7			0.00 100 1000 1000	.«. 0									7.1	9	7 6	22 30	22												
- 8	3			0.00 0.00 0.60		暗灰			径5~50mmの である)亜角~亜円礫/	が主体			7. 4 8. 1	5 1	2 4	7	7	<i>~</i>											
- 6	9			0.0 0.0 0.60	0.0				で 酸 種 は 硬 質 が ジ ル か で あ ろ	な安山岩礫が主 トを混入する、	:体で、 中~粗			8. 4	3	1 1	5		/								9. 15			u = 1
10)				o シルト 記じり	2	中位の		較である。 軽石片および 灰質砂を混ん 深度800~0	び雲母片を伴う 入する。	、火山			9.4	5 11	7 11	29	5 &									9. 45	D5-2		^{比里} 含水
				0.00 0.00 0.00	0 				深度0.00~3 多く混入す 深度10.50~	5.00m内近はン る。 ・12.00m付近に オス	火山灰			10.4			30	29												
_						黄灰			資助を設定 深度12.00m トを混入す	9 る。 付近から基質 る粗砂主体とな	がシル :る。			11. 1		/ 8	30	22												
- 12	2			0,60	· · · · · · · · · · · · · · · · · · ·									12. 1! /// 12. 4!	5 7	3 3	13 30	13												
13	3 4.0	0 6.75	5 13	3. 25 0 6 0 V V	• • /									13. 1 13. 2	i 13 <u>3</u>	37	50	50以上				20	_							1
- 14	1				~	赤褐灰	z		コアは送水打で採取され、	掘りにより礫状 る。 よ、ハンマーの	≿~棒状 ●普诵~			14.00 14.00	50 6		50 6	50#±												
- 15	5								強打で割れ 深度14.00m く、亀裂面(る程度である。 付近までは亀 は黒褐色で粘+	ーー 裂が多 および			<u>15.00</u> 15.04	50		504	50 以上				→								
- 16	6				✓ 安山岩 ✓	2			砂を挟在す 深度14.00m コアで採取	る。 付近からは概れ	ね棒状			<u>16.00</u>	50 4		50 4	50 01				→ 	-							
17	7					緑青灰	z		亀裂周辺の し、新鮮部(石英粒を混	安山岩は赤褐灰 は緑青灰色を呈 入し、微細な石	色を呈 する。 英 新 の			<u>17.00</u>	50		50	50岁上					_							
10	-0.8	60 4.80) 18	3. 05 V V	~				密集が線状	こ認められる。				18.00	50		50	50												1
														18.0	5		5													
- 19	9																													

孔内水平載荷試験結果資料

J G S 1421

孔内水平載荷試験

調査件名 地質調査委託

試験年月日 2015.10.2

地点番号(地盤高) No.3 (17.24m)

力計の地上高(m)

C型:P=Pm×荷重較正係数

試 験 者 結城栄信

GL -0.50

A型

測定深さ GL -2.30 m 孔内水位
 土 質 名 礫混じり砂質シルト 測定器名

.....

その他 初期スタンドパイプ水位0.6cm

(B型はガードセル初期圧:

)

m

	圧	力			7	変		位			
メーター指 示圧力 Pm kN/m ²	補正圧力 Pc kN/m ²	測定管載 荷圧力 P kN/m ²	15″	スタン Vm(ml) 30"	ドパイ または 1'	プ読み <u>Hm(cm)</u> 2'	3'	クリープ 変化量: ΔVまた はΔH	V(ml) または H(cm)	r(cm) または Δr(cm)	備考
0 (設置時初期圧 Pmo)	0	0	初期値 (Vm)oま	たは(Hm)o		0.6			0.0	4.00	
10	10	0	0.6	0.7	0.7	0.7		0.0	0.1	4.01	A型:Pm, Pc, P
15	13	2	0.8	0.9	1.0	1.1		0.2	0.5	4.04	Hm, ∆H, H, r
30	21	9	1.3	1.4	1.5	1.6		0.2	1.0	4.07	B型:Pm, Pc, P Vm AV V
40	29	11	1.8	1.9	2.1	2.2		0.3	1.6	4.11	C型:Pm,P,Hm
50	38	12	2.4	2.5	2.7	2.8		0.3	2.2	4.16	$\Delta { m Vr}$
60	48	12	3.0	3.1	3.3	3.5		0.4	2.9	4.20	
65	58	7	3.7	3.9	4.1	4.3		0.4	3. 7	4.26	
75	68	7	4.5	4.7	4.9	5.2		0.5	4.6	4.32	
85	76	9	5.3	5.6	5.7	6.0		0.4	5.4	4.37	
95	82	13	6.2	6.3	6.6	6.9		0.6	6.3	4.43	
105	89	16	7.1	7.2	7.4	7.8		0.6	7.2	4.49	
115	94	21	7.9	8.0	8.2	8.5		0.5	7.9	4.53	
125	99	26	8.6	8.7	9.0	9.2		0.5	8.6	4.58	
135	104	31	9.4	9.5	9.7	10.0		0.5	9.4	4.63	
145	107	38	10.1	10.2	10.4	10.7		0.5	10.1	4.67	
155	110	45	10.8	11.0	11.2	11.5		0.5	10.9	4.72	
165	113	52	11.7	11.9	12.1	12.4		0.5	11.8	4.77	
175	115	60	12.6	12.8	13.1	13.5		0.7	12.9	4.84	
180	118	62	13.7	13.9	14.2	14.6		0.7	14.0	4.90	
190	120	70	14.8	15.0	15.3	15.8		0.8	15.2	4.97	
200	123	77	16.1	16.3	16.7	17.3		1.0	16.7	5.06	
205	126	79	17.5	17.8	18.2	18.8		1.0	18.2	5.15	
215	129	86	19.2	19.4	19.9	20.8		1.4	20.2	5.26	
225	133	92	21.0	21.3	21.8	22.8		1.5	22.2	5.36	
特記事項 A型:P=Pm-Pc ここに, および B型:P=Pm-Pc (Z+h)/1	, Pc=Pg-Ps Ps, Pg は静ス ゴム膨張圧ネ , Pc=Pmo+Pg 0 Pmo/ナ初期5	k圧差 甫正値 - モカ	A型 B型	:Hmを計 H=(Hm) 求める :Vmを計 ΔV=(ŀ測、Δ) _{2′} -(Hm) ŀ測、 Vm) _{2′} -(H=(Hm)2)), rは Vm)30″	⊻ - (Hm) : タンク(^{30″} のH-r曲線カ	зĞ		
ここに, Zおよび	hは深さお。	よび圧	て刑	v-(VM) ・Hm な手	/2' 「(Ym -泪 A	10 rlt坐径	亦化量	70			

C型:Hmを計測、 Δr は半径変化量で $\Delta r = \{(Hm)_{3'} - (Hm)_0\} × 較正係数$

JGS	1421	孔P	内水平	載荷試	験		
調査件名	地質調査委	記			試験年月日	2015. 10. 2	
地点番号((地盤高)	No. 3 - L-1(T.P.+0.00m)			試験者	結城栄信	
測定深さ		GL -2.30	m	孔内水位		GL -0.50	m
土 質 名		礫混じり砂質シルト		測定器名		A型	

その他 初期スタンドパイプ水位0.6cm

(B型はガードセル初期圧:

)

	圧	力			2	変		位			
メーター指 示圧力 Pm ^{kN/m²}	補正圧力 Pc kN/m ²	測定管載 荷圧力 P	15″	スタン Vm(ml) 30″	ドパイ または 1'	プ読み Hm(cm) 2'	3'	クリープ 変化量: ΔVまた は ΛH	V(ml) または H(cm)	r(cm) または Ar(cm)	備考
230	137	93	23.1	23.4	23.9	24.9		1.5	24.3	5.48	記入項日
240	142	98	25.3	25.7	26.3	27.4		1.7	26.8	5.61	A型:Pm,Pc,P
250	146	104	27.8	28.1	28.8	29.9		1.8	29.3	5.73	Hm, Δ H, H, r
260	151	109	30.3	30.7	31.4	32.5		1.8	31.9	5.86	B型:Pm, Pc, P
265	156	109	33.1	33.5	34.2	35.4		1.9	34.8	6.00	vm,Δv,v C型:Pm.P.Hm
275	161	114	35.8	36.2	36.9	38.2		2.0	37.6	6.14	ΔVr
285	166	119	38.6	38.9	39.7	40.9		2.0	40.3	6.26	
A型:P=Pm-Pc ここに, および: B型:P=Pm-Pc (Z+h)/1 ここに, Zおよび 力計の5 C型:P=Pm×7	, Pc=P _G -Ps Ps, P _G は静7 ゴム膨張圧ネ , Pc=Pmo+P G .0 Pmoは初期E hは深さお。 也上高(m) 苛重較正係数	k 圧差 甫正値 王力、 よび圧 数	A型 B型 C型	:Hmを書 H=(Hm 求める :Vmを書 <u>Δ</u> V=(V=(Vm :Hmを書 <u>Δ</u> r={	+⁄揤、Δ) _{2′} - (Hm 5 +⁄揤、 Vm) _{2′} - (Vn +⁄揤、Δ (Hm) _{3′} -	H= (Hm) 2))o, rは (Vm)30″ い)o rは半径 · (Hm)o } :	y - (fm) (タンク) ※変化量 ※較正例	30″ のH-r曲線カ で 系数	٥Ğ		

室内土質試験結果資料

土質試験結果一覧表(基礎地盤)

調查件名 地質調查委託

整理年月日 平成 27年 11月 11日

					整理担当者	寺尚 貴史	-
試	料番号	D1-1	D2-1	D3-1	D3-2	D5-1	D5-2
(深 さ)	(6.15∼6.45m)	(6.15∼6.45m)	$(2.15 \sim 2.50 \text{m})$	$(4.15 \sim 4.45 \text{m})$	$(5.15 \sim 5.45 \text{m})$	(9.15∼9.45m)
	湿 潤 密 度 ρ _t g/cm ³						
-	乾燥密度ρd g/cm ³						
	土粒子の密度 $ ho_{s}$ g/cm ³	2.693	2.731	2.679	2.632	2.693	2.702
	自然含水比 w ₁ %	24.3	12.5	36.3	41.9	40.3	16.4
般	間 隙 比 <i>e</i>						
	飽和度 <i>S</i> _r %						
	石 分 (75mm以上) %						
	礫 分 ¹⁾ (2~75mm) %	37.3	59.6	25.1	26.8	4.9	48.7
粒	砂 分 ¹⁾ (0.075~2mm) %	37.9	27.1	33.4	36.7	54.1	37.9
	シルト分 ¹⁾ (0. 005~0. 075mm) %	7.5	10.0	19.1	13.4	16.3	10.4
	粘土分 ¹⁾ (0.005mm糒)%	17.3	13.3	22.4	23.1	24.7	13.4
	最大粒径 mm	37.5	37.5	26.5	26.5	9.5	26.5
度	均等係数U。						
コン	液性限界 <i>w</i> 1 %	68.3		71.6	62.7	56.3	
システ	塑性限界 <i>w</i> , %	28.8		31.5	27.7	29.4	
シシ	塑性指数 I _P	39.5		40.1	35.0	26.9	
特性							
分	地盤材料の	細粒分質礫質砂	細粒分まじり	細粒分質礫質砂	細粒分質礫質砂	細粒分質砂	細粒分まじり
-	分類名		砂質礫				砂質礫
North I	2 2 221 F						
類	分類記号	(SFG)	(GS-F)	(SFG)	(SFG)	(SF)	(GS-F)
類	分類記号 試験方法	(SFG)	(GS-F)	(SFG)	(SFG)	(SF)	(GS-F)
類 圧	分類記号 試験方法 圧縮指数 <i>C</i> 。	(SFG)	(GS-F)	(SFG)	(SFG)	(SF)	(GS-F)
類 圧	分類記号 試験方法 圧縮指数 <i>C</i> 。 E密降伏応力 <i>p</i> 。kN/m ²	(SFG)	(GS-F)	(SFG)	(SFG)	(SF)	(GS-F)
類 正 密	分類記号 試験方法 圧縮指数 <i>C</i> 。 圧密降伏応力 <i>p</i> 。kN/m ²	(SFG)	(GS-F)	(SFG)	(SFG)	(SF)	(GS-F)
類 圧 密	分類記号 試験方法 圧縮指数 <i>C</i> 。 圧密降伏応力 <i>p</i> 。kN/m ²	(SFG)	(GS-F)	(SFG)	(SFG)	(SF)	(GS-F)
類 圧 密 一	分類記号 試験方法 圧縮指数 <i>C</i> 。 圧密降伏応力 <i>p</i> 。kN/m ² 一軸圧縮強さ <i>q</i> _a kN/m ²	(SFG)	(GS-F)	(SFG)	(SFG)	(SF)	(GS-F)
類 圧 密 一軸	分類記号 試験方法 圧縮指数 <i>C</i> 。 圧密降伏応力 <i>p</i> 。kN/m ² 一軸圧縮強さ <i>q</i> 。kN/m ²	(SFG)	(GS-F)	(SFG)	(SFG)	(SF)	(GS-F)
類	 分類記号 試験方法 圧縮指数C₀ 圧密降伏応力p₀kN/m² 一軸圧縮強さq₀kN/m² 一軸圧縮強さq₀kN/m² 一軸圧縮強さq₀kN/m² 	(SFG)	(GS-F)	(SFG)	(SFG)	(SF)	(GS-F)
類 圧 密 一軸圧縮	 分類記号 試験方法 圧縮指数C₀ 圧密降伏応力 p₀ kN/m² 一軸圧縮強さ q₀ kN/m² 一軸圧縮強さ q₀ kN/m² 一軸圧縮強さ q₀ kN/m² 一軸圧縮強さ q₀ kN/m² 	(SFG)	(GS-F)	(SFG)	(SFG)	(SF)	(GS-F)
類	 分類記号 試験方法 圧縮指数C₀ 圧密降伏応力 p₀ kN/m² 一軸圧縮強さ qu kN/m² 一軸圧縮強さ qu kN/m² 一軸圧縮強さ qu kN/m² 一軸圧縮強さ qu kN/m² 試験条件 	(SFG)	(GS-F)	(SFG)	(SFG)	(SF)	(GS-F)
類 圧 密 一軸圧縮 せ	 分類記号 試験方法 圧縮指数C。 圧密降伏応力p。kN/m² 一軸圧縮強さq。kN/m² 一軸圧縮強さq。kN/m² 一軸圧縮強さq。kN/m² 一軸圧縮強さq。kN/m² 試験条件 金広力 	(SFG)	(GS-F)	(SFG)	(SFG)	(SF)	(GS-F)
類 圧 密 一軸圧縮 せ ん	分類記号 試験方法 圧縮指数 C。 圧密降伏応力 p。kN/m ² 一軸圧縮強さ q _u kN/m ² 一軸圧縮強さ q _u kN/m ² 一軸圧縮強さ q _u kN/m ² ご kN/m ² 二軸圧縮強さ q _u kN/m ² 二軸圧縮強さ q _u kN/m ² 二軸圧縮強さ q _u kN/m ² 二	(SFG)	(GS-F)	(SFG)	(SFG)	(SF)	(GS-F)
類 圧 密 一軸圧縮 せ ん	 分類記号 試験方法 圧縮指数 C₀ 圧密降伏応力 p₀ kN/m² 一軸圧縮強さ q₀ kN/m² 一軸圧縮強さ q₀ kN/m² 一軸圧縮強さ q₀ kN/m² 一軸圧縮強さ q₀ kN/m² 計 験条件 全応力 c kN/m² φ ∘ c' kN/m² 	(SFG)	(GS-F)	(SFG)	(SFG)	(SF)	(GS-F)
類 圧 密 一軸圧縮 せん 断	分類記号 試験方法 圧縮指数 C_c 圧密降伏応力 p_c kN/m ² 一軸圧縮強さ q_u kN/m ² 一軸圧縮強さ q_u kN/m ² 一軸圧縮強さ q_u kN/m ² 一軸圧縮強さ q_u kN/m ² ご kN/m ² 行動応力 $\frac{c \ kN/m2}{\phi^{\circ}}$	(SFG)	(GS-F)	(SFG)	(SFG)	(SF)	(GS-F)
類 圧 密 一軸圧縮 せん 断	分類記号 試験方法 圧縮指数 C_{\circ} 圧密降伏応力 p_{\circ} kN/m ² 一軸圧縮強さ q_{u} kN/m ² 一軸圧縮強さ q_{u} kN/m ² 一軸圧縮強さ q_{u} kN/m ² 一軸圧縮強さ q_{u} kN/m ² 二軸圧縮強さ q_{u} kN/m ² 二軸圧縮強さ q_{u} kN/m ² 二軸圧縮強さ q_{u} kN/m ² 二軸圧縮強さ q_{u} kN/m ² 二 本 C kN/m ² ϕ° 有効応力	(SFG)	(GS-F)	(SFG)	(SFG)	(SF)	(GS-F)
類 圧 密 一軸圧縮 せ ん 断	分類記号 試験方法 圧縮指数 C_{\circ} 圧密降伏応力 p_{\circ} kN/m^{2} 一軸圧縮強さ q_{\circ} kN/m^{2} 一軸圧縮強さ q_{\circ} kN/m^{2} 一軸圧縮強さ q_{\circ} kN/m^{2} 一軸圧縮強さ q_{\circ} kN/m^{2} ご kN/m^{2} 合。 合。 有効応力 50%粒径 mm	(SFG)	(GS-F)	(SFG)	(SFG)	(SF)	(GS-F)
類 圧 密 一軸圧縮 せ ん 断	分類記号 試験方法 圧縮指数 C_c 圧密降伏応力 p_c kN/m ² 一軸圧縮強さ q_u kN/m ² う 前 気効応力 50%粒径 mm 20%粒径 mm	(SFG) 	(GS-F)	(SFG) 	(SFG) (SFG)	(SF)	(GS-F)
類 圧 密 一軸圧縮 せ ん 断	分類記号 試験方法 圧縮指数 C_{\circ} 圧密降伏応力 p_{\circ} kN/m ² 一軸圧縮強さ q_{*} kN/m ² う 0%粒径 mm 10%粒径 mm	(SFG) (SFG) (SFG) () () () () () () () () () () () () ()	(GS-F)	(SFG)	(SFG) (SFG)	(SF)	(GS-F)
類 圧 密 一軸圧縮 せ ん 断		(SFG) (SFG)	(GS-F) 4. 3 0. 29 - 13. 3	(SFG) (SFG)	(SFG) (SFG)	(SF) 	(GS-F)

特記事項

1) 石分を除いた75mm未満の土質材料 に対する百分率で表す。

[1kN/m²≒0.0102kgf/cm²]

JGS 0111

 JIS A 1202
 土 粒 子 の 密 度 試 験 (測定)

 IGS 0111
 土 粒 子 の 密 度 試 験 (測定)

調查件名 地質調查委託

試験年月日 平成 27年 11月 9日

- - - - -

試 験 者 寺岡 貴史

試 料 番 号 (深 さ)	D1-1 (6.15	\sim 6.45m)		D2-1 (6.15	\sim 6.45m)	
ピクノメーター No.	248	311	317	319	323	329
(試料+蒸留水+ピクノメーター)の質量 m ь g	161.658	167.953	163.813	160.430	159.907	159.829
m をはかったときの内容物の温度 T $^{\circ}$ C	21.6	21.6	21.6	21.6	21.6	21.6
T° Cにおける蒸留水の密度 $\rho_w(T)$ g/cm ³	0.99786	0.99786	0.99786	0.99786	0. 99786	0.99786
温度 <i>T</i> ℃の蒸留水を満たしたときの ¹⁾ (蒸留水+ピクノメーター)質量 m ^a g	144. 554	152.279	147.780	146.401	145.693	146.200
容器 No.	248	311	317	319	323	329
試 料 の (炉乾燥試料+容器)質量g	62.698	73.424	67.510	60.084	59.281	60.477
炉乾燥質量 容 器 質 量 g	35. 524	48.542	42.025	37.995	36.858	39.000
m _s g	27.174	24.882	25.485	22.089	22. 423	21.477
土 粒 子 の 密 度 $ ho_{s}$ g/cm ³	2.693	2.696	2.690	2.735	2.726	2.731
平均值 ρ_s g/cm ³		2.693			2.731	
試料番号(深さ)	D3-1 (2.15	\sim 2.50m)		D3-2 (4.15	\sim 4.45m)	
ピクノメーター No.	234	236	271	204	263	366
(試料+蒸留水+ピクノメーター)の質量 m ь g	158.392	161.717	158.001	159.362	157.794	158.437
<i>m</i> 」をはかったときの内容物の温度 <i>T</i> ℃	21.6	21.6	21.6	21.6	21.6	21.6
<i>T</i> ℃における蒸留水の密度 ρ _w (<i>T</i>)g/cm ³	0.99786	0.99786	0.99786	0.99786	0. 99786	0.99786
温度 <i>T</i> ℃の蒸留水を満たしたときの ¹⁾ (蒸留水+ピクノメーター)質量 <i>m</i> ^a g	142.986	147.142	142.174	144. 994	142.851	144. 559
容器 No.	234	236	271	204	263	366
試 料 の (炉乾燥試料+容器)質量g	57.440	60.853	64. 599	62.678	57.816	59.338
炉乾燥質量 容 器 質 量 g	32.908	37.646	39.342	39.544	33. 747	36.975
m _s g	24.532	23.207	25.257	23.134	24.069	22.363
土 粒 子 の 密 度 $ ho_{s}$ g/cm ³	2.682	2.683	2.673	2.633	2.632	2.630
平均值 ρ_s g/cm ³		2.679			2.632	
試料番号(深さ)	D5-1 (5.15	\sim 5.45m)		D5-2 (9.15	\sim 9.45m)	
ピクノメーター No.	251	299	365	296	306	391
(試料+蒸留水+ピクノメーター)の質量 m ь g	168.994	159.221	161.562	156.448	155.664	159.571
m をはかったときの内容物の温度 T $^{\circ}$ C	21.6	21.6	21.6	21.6	21.6	21.6
T° Cにおける蒸留水の密度 $\rho_w(T)$ g/cm ³	0.99786	0.99786	0.99786	0.99786	0. 99786	0.99786
温度 <i>T</i> ℃の蒸留水を満たしたときの ¹⁾ (蒸留水+ピクノメーター)質量 m ^a g	152.405	143.217	145.734	144.106	144. 882	149.193
容器 No.	251	299	365	296	306	391
試 料 の (炉乾燥試料+容器)質量g	67.943	59.802	62.385	61.190	53.760	56.071
炉乾燥質量 容 器 質 量 g	41.604	34.421	37.179	41.647	36.662	39.596
m _s g	26.339	25. 381	25.206	19. 543	17.098	16.475
土 粒 子 の 密 度 ρ _s g/cm ³	2.696	2.701	2.682	2.708	2.701	2.696
平 均 值 ρ_s g/cm ³		2.693			2.702	

特記事項

1) ピクノメーターの検定結果から求める。

$$\rho_{s} = \frac{m_{s}}{m_{s} + (m_{a} - m_{b})} \times \rho_{w}(T)$$

JIS	А	$1\ 2\ 0\ 3$
JGS		$0\ 1\ 2\ 1$

土の含水比試験

調查件名 地質調查委託

試験年月日 平成 27年 11月 6日

試 験 者 寺岡 貴史

試料番号 (深さ)	D1−1 (6.15~	6.45m)		D2-1 (6.15~6.45m)				
容 器 No.	1336	1344	1351	1139	1146	1164		
ma g	280.62	261.72	291.58	247.34	234.59	247.96		
m₅ g	255.47	239.83	263.63	231.67	221.58	233. 41		
<i>m</i> ₀ g	148.20	152.70	148.03	110. 50	117.62	111.22		
w %	23.45	25.12	24.18	12.93	12.51	11.91		
平均值 w %		24.3			12.5			
特記事項								

試料番号(瀉	ぞさ)	D3-1 (2.15~	~2.50m)		D3-2 (4.15~	4.45m)	
容 器 No.		1019	1025	1378	1009	1026	1040
<i>m</i> a	g	245.97	250.53	244.26	239.86	229.47	242.03
m _b	g	217.00	221.41	215.20	210. 28	203.08	212.59
m.	g	138.87	136.64	137.45	140.69	141.23	140.12
w	%	37.08	34.35	37.38	42.51	42.67	40.62
平均值 w	%		36.3			41.9	
特記事	項						

試料番号((深さ)	D5-1 (5.15~	~5.45m)		D5-2 (9.15~	-9.45m)	
容器 No).	1317	1332	1350	1122	1123	1264
m a	g	246.80	253.60	252.43	208.45	216.80	211.67
m b	g	218.74	223.02	222.72	195.31	202.70	197.10
m.	g	148.15	149.61	147.57	111.37	116.76	111.46
w	%	39.75	41.66	39.53	15.65	16.41	17.01
平均值 и	υ%		40.3			16.4	
特記事	項						

試料番号 (深さ)			
容器 No.			
m _a g			
m₅ g			
m₀ g			
%			
平均值 w %			
特記事項			

試料番号 (深さ)			
容 器 No.			
<i>m</i> a g			
m _b g			
<i>m</i> ₀ g			
w %		 	
平均值 w %			
特記事項			

 $w = rac{m_{ ext{\tiny B}} - m_{ ext{\tiny B}}}{m_{ ext{\tiny b}} - m_{ ext{\tiny c}}} imes 100$ $m_{ ext{\tiny b}} : (試料+容器)質量$ $m_{ ext{\tiny b}} : (炉乾燥試料+容器)質量$ $m_{ ext{\tiny c}} : 容器質量$

JIS A 1204 JGS

0 1 3 1

試 験 (粒径加積曲線)

調查件名 地質調查委託

試験年月日 平成 27年 11月 9日

								試	験	者	寺岡	貴史	
試料番号	D1-1		D2-1			試	料	番	号		D1-1		D2-1
(深 さ)	(6.15~6.	45m)	(6.15~6.	45m)		(沼	EK.		さ)		(6.15~	6.45m)	$(6.15 \sim 6.45 \text{m})$
	粒径㎜	通過質量百分率%	粒径mm	通過質量百分率%	粗	碀	鮗	分		%	4	27.9	23.8
	75		75		中	碀	熊	分		%		4.6	24.9
\$	53		53		細	碀	柴	分		%		4.8	10.9
-	37.5	100.0	37.5	100.0	粗	石	少	分		%		10.5	11.2
2	26.5	88.6	26.5	91.2	中	石	少	分		%		17.7	10.4
2	19	72.1	19	76.2	細	石	少	分		%		9.7	5.5
	9.5	70.7	9.5	60.4	シ	ル	Ь	分		%		7.5	10.0
v ·	4.75	67.5	4.75	51.3	粘	E	E	分		%		17.3	13.3
	2	62.7	2	40.4	2mm	ふるい	通過	質量	百分	率 %	(62.7	40.4
ゴ	0.850	52.2	0.850	29.2	425	μ m s	るい通	過質量	百分	率 %	4	41.7	22.9
15	0.425	41.7	0.425	22.9	75 μ	umふる	sい通i	過質量	百分	率 %	4	24.8	13.3
杤	0.250	34.5	0.250	18.8	最	大	粒	径		mm		37.5	37.5
	0.106	26.5	0.106	14.1	60	%	粒	径	D_{60}	mm		1.5	9.2
	0.075	24.8	0.075	13.3	50	%	粒	径	D_{50}	mm	(0.74	4.3
	0.0536	24.1			30	%	粒	径	D_{30}	mm	(0.17	0. 91
\$	0.0380	22.8			10	%	粒	径	D_{10}	mm		_	
1/L	0.0241	21.6			均	等	係	数	U_{\circ}			_	
降	0.0140	20.3			曲	率	係	数	U_{\circ}^{\prime}			_	
	0.0099	19.1			±	粒子	の密	度	ρ_{s}	g/cm ³	2.	693	
分	0.0070	17.9			使用	した	分散斉	ij			ヘキサメタりん	酸ナトリウム	
析	0.0035	16.6			溶液	凌濃度	,溶液	友添加	量		飽和溶液,	,10ml	
ושי	0.0014	15.4			20	%	粒	径	D_{20}	mm	0.	013	0.29

粒

 \mathcal{O}

±

度

JIS A 1204 JGS

0 1 3 1

試 験 (粒径加積曲線)

調査件名 地質調査委託 試験年月日 平成 27年 11月 9日

					-			試	験	者	寺岡 貴史	
試料番号	D3-1		D3-2			試	料	番	号		D3-1	D3-2
(深 さ)	$(2.15 \sim 2.$	50m)	(4.15~4.	45m)		(浮	ЧЧ Ч		さ)		(2.15∼2.50m) $(4.15 \sim 4.45 \text{m})$
	粒径㎜	通過質量百分率%	粒径mm	通過質量百分率%	粗	đ	柴	分		%	11.8	4.3
	75		75		中	Ĩ.	柴	分		%	9.3	18.1
à	53		53		細	đ	柴	分		%	4.0	4.4
-	37.5		37.5		粗	石	少	分		%	7.5	5.4
2	26.5	100.0	26.5	100.0	中	石	少	分		%	11.7	15.6
. 9	19	88.2	19	95.7	細	石	少	分		%	14.2	15. 7
	9.5	82.0	9.5	80.3	シ	ル	Ь	分		%	19.1	13.4
~ `	4.75	78.9	4.75	77.6	粘	=	£	分		%	22.4	23.1
~	2	74.9	2	73.2	2mm	ぃふるぃ	`通過	質量	百分率	容 %	74.9	73.2
分	0.850	67.4	0.850	67.8	425	5μ m $\&$	るい通	過質量	百分	率 %	61.3	60.1
	0.425	61.3	0.425	60.1	75 j	u m ふそ	らい通i	過質量	百分	率 %	41.5	36.5
析	0.250	55.7	0.250	52.2	最	大	粒	径		mm	26.5	26.5
	0.106	44.3	0.106	39.6	60	%	粒	径	D_{60}	mm	0.37	0. 42
	0.075	41.5	0.075	36.5	50	%	粒	径	D_{50}	mm	0.17	0. 22
	0.0533	38.6	0.0539	33.8	30	%	粒	径	D_{30}	mm	0.015	0.025
<u>`</u>	0.0378	36.9	0.0382	31.9	10	%	粒	径	D_{10}	mm	_	-
УL.	0.0240	33.3	0.0242	29.9	均	等	係	数	$U_{\rm c}$		_	_
降	0.0140	29.6	0.0140	28.0	曲	率	係	数	$U_{\rm c}'$		_	_
	0.0099	26.0	0.0099	26.1	土	粒子	の密	;度	ρ_{s}	g/cm ³	2.679	2.632
分	0.0070	24.2	0.0071	24.1	使月	目した	分散斉	 1			ヘキサメタりん酸ナトリウ	ム ヘキサメタりん酸ナトリウム
+r.	0.0035	20.6	0.0035	22.2	溶液	夜濃度	,溶液	友添加	量			
忉	0.0015	17.0	0.0014	20.2	20	%	粒	径	D_{20}	mm	0.0031	0.0012
				1								

粒

±

 \mathcal{O}

度

(社)地盤工学会 6343

JIS A 1204 JGS

0 1 3 1

試 験 (粒径加積曲線)

調查件名 地質調查委託

試験年月日 平成 27年 11月 9日

								試	験	者	寺岡 貴史	
試料番号	D5-1		D5-2			試	料	番	号		D5-1	D5-2
(深 さ)	$(5.15 \sim 5.$	45m)	(9.15~9.	45m)		(沼	EV.		さ)		$(5.15 \sim 5.45 \text{m})$	(9.15∼9.45m)
	粒径㎜	通過質量百分率%	粒径mm	通過質量百分率%	粗	6	柴	分		%		3.6
	75		75		中	砲	柴	分		%	1.4	31.1
ۍ ا	53		53		細	夜	원	分		%	3.5	14.0
	37.5		37.5		粗	石	少	分		%	8.6	14.1
2	26.5		26.5	100.0	中	石	少	分		%	25.5	16.6
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	19		19	96.4	細	石	少	分		%	20.0	7.2
	9.5	100.0	9.5	77.1	シ	IV	Ь	分		%	16.3	10.4
v ·	4.75	98.6	4.75	65.3	粘	=	E	分		%	24.7	13.4
~	2	95.1	2	51.3	2mm	ふるい	通過	質量	百分率	萃 %	95.1	51.3
ゴ	0.850	86.5	0.850	37.2	425	µmኤ	るい通	過質量	∎百分率	赵 %	74.1	27.0
1-	0.425	74.1	0.425	27.0	75 _L	1 m ふる	sい通i	過質量	皆分≊	赵 %	41.0	13.4
朳	0.250	61.0	0.250	20.6	最	大	粒	径		mm	9.5	26.5
	0.106	44.2	0.106	14.5	60	%	粒	径	$D_{{\scriptscriptstyle 60}}$	mm	0.24	3.4
	0.075	41.0	0.075	13.4	50	%	粒	径	$D_{\rm 50}$	mm	0.15	1.9
	0.0527	38.2			30	%	粒	径	$D_{30}$	mm	0.016	0. 53
ùt-	0.0375	35.3			10	%	粒	径	$D_{10}$	mm		
<i>i</i> L	0.0238	32.2			均	等	係	数	$U_{\rm c}$			
降	0.0138	29.2			曲	率	係	数	$U_{\rm c}^\prime$			
	0.0098	27.7			±	粒子	の密	度	$ ho_{s}$	g/cm ³	2.693	
分	0.0070	26.2			使月	目した	分散斉	<b>-</b>			ヘキサメタりん酸ナトリウム	
折	0.0035	23.2			溶液	友濃度	,溶液	友添加	]量		飽和溶液 , 10m1	
171	0.0014	20.2			20	%	粒	径	$D_{20}$	mm	0.0012	0.24

粒

 $\mathcal{O}$ 

±

度



JIS A 1205 土の液性限界・塑性限界試験(試験結果) JGS 0141

調查件名 地質調查委託

試験年月日 平成 27年 11月 10日

試料番号	(深さ)	D1-	-1	(6. 15~6	6.45	im)				
液	性限界試験	険		塑性限	界試	験	液性限界	$w_{\scriptscriptstyle \rm L}$	%	
落下回数	含水比	w	%	含水比	w	%	68.	3		
40		65.4			28.	6	塑性限界	$w_{\scriptscriptstyle P}$	%	
30		67.3			28.	2	28.	8		
26		68.2			29.	6	塑性指数	$I_{\rm p}$		
20		69.5					39.	5		
13		72.1		0.425mmフルイ通過試料						
試料番号	(深さ)	D3-	-1	$(2.15 \sim 2)$	2.50	m)				
液	性限界試験	検		塑性限	界試	験	液性限界	$w_{\text{L}}$	%	
落下回数	含水比	w	%	含水比	w	%	71.	6		
40		67.9			31.	0	塑性限界	$w_{\scriptscriptstyle \mathrm{P}}$	%	
30		70.4			31.	4	31.	5		
22		72.0			32.	2	塑性指数	$I_{\rm p}$		
17		74.4					40.	1		
12 77.9				0	. 425	mmフル	レイ通過試	枓		
試料番号	(深さ)	D3-	-2	(4.15~4	l. 45	im)				
液	性限界試験	険		塑性限	界試	験	液性限界	$w_{\text{L}}$	%	
落下回数	含水比	w	%	含水比	11)	%	62	-		
42					w	, .	02.	7		
		60.3			27.	5	塑性限界	$\frac{1}{w_p}$	%	
30		60.3 62.2			27. 27.	5 6	02. 塑性限界 27.	7 w _p 7	%	
30 20		60.3 62.2 63.7			27. 27. 27.	5 6 9	塑性限界       27.       塑性指数	7 w _p 7 I _p	%	
30 20 14		60.3 62.2 63.7 65.2			27. 27. 27.	5 6 9	27. 塑性限界 27. 塑性指数 35.	7 w _p 7 I _p 0	%	
30 20 14 10		60. 3 62. 2 63. 7 65. 2 66. 7		0	27. 27. 27.	5 6 9	<ul> <li>塑性限界</li> <li>27.</li> <li>塑性指数</li> <li>35.</li> <li>レイ通過試知</li> </ul>	$\frac{1}{w_{p}}$ $\frac{1}{I_{p}}$ $0$	%	
30 20 14 10 試料番号	  (深さ)	60. 3 62. 2 63. 7 65. 2 66. 7		0 (5. 15~5	27. 27. 27. . 425 5. 45	5 6 9 	22. 塑性限界 27. 塑性指数 35. レイ通過試	$ \frac{1}{w_{p}} $ $ \frac{1}{I_{p}} $ $ 0 $	%	
30 20 14 10 試料番号		60.3 62.2 63.7 65.2 66.7 D5- 険		0 (5.15~5 塑性限	27. 27. 27. . 425 5. 45 界試	5 6 9 ··································	<ul> <li>塑性限界</li> <li>27.</li> <li>塑性指数</li> <li>35.</li> <li>レイ通過試知</li> <li>液性限界</li> </ul>	$\frac{1}{w_{P}}$ $\frac{1}{I_{P}}$ $0$ $\frac{1}{W_{L}}$	%	
30 20 14 10 試料番号 液 落下回数		60.3 62.2 63.7 65.2 66.7 D5- 険 w		0 (5.15~5 塑性限 含水比	27. 27. 27. 27. 5. 425 5. 45 7 界試 w	5 6 9 ······フノ ····························	迎性限界 27. 塑性指数 35. レイ通過試 液性限界 56.	7 wp 7 Ip 0 料 wL 3	%	
30 20 14 10 試料番号 液 落下回数 39		60.3 62.2 63.7 65.2 66.7 D5- 険 w 53.0	-1	0 (5.15~5 塑性限 含水比	27. 27. 27. 27. . 425 5. 425 5. 45 界詞 W 29.	5 6 9 mmフル m) 二験 0	<ul> <li>塑性限界</li> <li>27.</li> <li>塑性指数</li> <li>35.</li> <li>レイ通過試決</li> <li>液性限界</li> <li>56.</li> <li>塑性限界</li> </ul>	7 Wp 7 Ip 0 松 4 WL 3 Wp	%	
30 20 14 10 試料番号 液 落下回数 39 30	<ul> <li>(深さ)</li> <li>性限界試験</li> <li>含水比</li> </ul>	60.3 62.2 63.7 65.2 66.7 D5- 険		0 (5.15~5 塑性限 含水比	27. 27. 27. 27. 5. 425 5. 425 5. 45 界試 <i>w</i> 29. 29.	、 5 6 9 9 ファ ファ  、 験 の 2	迎性限界 27. 塑性指数 35. レイ通過試 液性限界 56. 塑性限界 29.	γ       wp       7       Ip       0       %       wt       3       wp       4	%	
30 20 14 10 試料番号 液 落下回数 39 30 20	(深さ) (深さ) 生限界試験 含水比	60.3 62.2 63.7 65.2 66.7 D5- 後		0 (5.15~5 塑性限 含水比	27. 27. 27. 27. 5. 425 5. 455 7 月試 W 29. 29. 30.	5 5 6 9 9 ······· ····· ····· ······ ········	<ul> <li>塑性限界</li> <li>27.</li> <li>塑性指数</li> <li>35.</li> <li>レイ通過試業</li> <li>液性限界</li> <li>56.</li> <li>塑性限界</li> <li>29.</li> <li>塑性指数</li> </ul>	$\frac{1}{w_{p}}$ $\frac{1}{I_{p}}$ $\frac{1}{0}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$	%	
30 20 14 10 試料番号 液 落下回数 39 30 20 12	(深さ) 生限界試験 含水比	60.3 62.2 63.7 65.2 66.7 D5- 後 53.0 54.7 58.1 61.8		0 (5.15~5 塑性限 含水比	27. 27. 27. 27. 5.425 5.45 7 月試 29. 29. 30.	5 5 9 9 mmフリ 第 0 2 1	<ul> <li>塑性限界</li> <li>27.</li> <li>塑性指数</li> <li>35.</li> <li>レイ通過試決</li> <li>液性限界</li> <li>56.</li> <li>塑性限界</li> <li>29.</li> <li>塑性指数</li> <li>26.</li> </ul>	7 Wp 7 1p 0 低 4 1p 9	%	

特記事項



JGS 0051

### 地盤材料の工学的分類

#### 調查件名 地質調查委託

試験年月日 平成 27年 11月 10日

шA -<del>1</del>~

土田	

									試験者	寺岡 貴史	-
	試	料	番	号		D1-1	D2-1	D3-1	D3-2	D5-1	D5-2
	(	深	さ	)		(6.15∼6.45m)	$(6.15 \sim 6.45 \text{m})$	$(2.15 \sim 2.50 \text{m})$	$(4.15 \sim 4.45 \text{m})$	$(5.15 \sim 5.45 \text{m})$	$(9.15 \sim 9.45 \text{m})$
石	分	(75mm	以上	)	%						
礫	分	$(2 \sim 7)$	'5mm)		%	37.3	59.6	25.1	26.8	4.9	48.7
砂	分	(0.07	$5 \sim 2$	mm)	%	37.9	27.1	33.4	36.7	54.1	37.9
細 粒 分(0.075mm未満) %			%	24.8	13.3	41.5	36.5	41.0	13.4		
シルト分(0.005~0.075mm)%				.075m	m)%	7.5		19.1	13.4	16.3	
粘 土 分(0.005mm未満) %			%	17.3		22.4	23.1	24.7			
最	大	粒	径		mm	37.5	37.5	26.5	26.5	9.5	26.5
均	等	係	数	$U_{\rm c}$		-	_	_	_	-	-
液	性	限	界	$w_{\text{L}}$	%	68.3		71.6	62.7	56.3	
塑	性	限	界	$w_{\scriptscriptstyle P}$	%	28.8		31.5	27.7	29.4	
塑	性	指	数	$I_{\rm p}$		39.5		40.1	35.0	26.9	
						細粒分質礫質砂	細粒分まじり	細粒分質礫質砂	細粒分質礫質砂	細粒分質砂	細粒分まじり
地盤材料の分類名					砂質礫				砂質礫		
分	類	記	号			(SFG)	(GS-F)	(SFG)	(SFG)	(SF)	(GS-F)
凡	例	記	号			0	0	•	$\bigtriangleup$	<b>A</b>	



(社)地盤工学会 6221
## 土質試験結果一覧表(基礎地盤)

調查件名 地質調査委託

_____

整理年月日 平成 27年 10月 30日

整理担当者 寺岡 貴史

⇒ Þ		mr 1				
) (	、 ^科 番 号 〔深   さ 〕	15-1 (3. 00 $\sim$ 3. 80m)				
	湿 潤 密 度 ρ _t g/cm ³	1.881				
<u> </u>	乾燥密度 od g/cm ³	1 415	 			
	十粒子の密度 o. g/cm ³	2 661	 			
	自伏会水比 10 %	32.5	 			
4.7	目 附 比 a	0 001	 			
般	向 际 比 C 	0.001	 			
		98.2				
	口 (10mm以上) %		 			
粉	傑 方 ^{**} (2~75mm) %	2.6	 			
117	砂 分"(0.075~2mm) %	45.5	 			
	シルト分 ¹⁷ (0. 005~0. 075mm) %	25.4	 			
	粘土分 ¹⁾ (0.005mm満)%	26.5	 			
	最大粒径 mm	4.75	 			
度	均等係数U。	_	 			
コン	液性限界w1 %	64.0				
システ	塑性限界 wp %	30.0	 			
ンシ	塑性指数 I _p	34.0	 			
特性			 			
 分	地盤材料の	砂質粘土				
<i>,</i> ,	分類名	(高液性限界)				
類	分類記号	(CHS)	 			
	試 験 方 法	段階載荷				
圧	圧縮指数 <i>C</i> 。	0.46	 			
		63.6	 			
宓			 			
省			 			
	一軸圧縮強さ a kN/m ²	17.9				
一	一軸 圧縮強な $q_{\mu}$ kN/m	11.5	 			
亜圧		14.0	 			
縮			 			
바	武		 			
Ċ	全応力		 			
h	φ		 			
断	φ΄ °		 			
特記	事項		 	1) Ā	G分を除いた75mm こ対する百分率で	 未満の土質材料 表す。

[1kN/m²≒0.0102kgf/cm²]

JIS	А	$1\ 2\ 2\ 5$
JGS		$0\ 1\ 9\ 1$

### 土 の 湿 潤 密 度 試 験 (ノギス法)

調查件名 地質調查委託 試験年月日 平成 27年 10月 20日

試料番号	(深さ)	T5-1	$(3.00 \sim 3.80 \text{m})$

試料:	番号	(深さ	)	T5-	1 (	3.00	$\sim$ 3.80m)		試	験	者 寺岡	] ;	貴史	
供	試	体	No.				1	2						
供試	は体の	質量	т			g	362.89	360.28						
		上 立四				4.920	4.970							
供	直	Ŀ		司)		СШ	4.900	4. 940						
		山立				4.950	4. 920							
試		Ψ				Cm	4.940	4. 890						
		 T					5.170	5.030						
体	径	r		司)		Cm	5. 180	5.070						
		平	均	値	D	cm	5.010	4.970						
体	高					9.750	9.920							
	1.4					СШ	9.760	9.900						
積	5	平	均	値	Н	cm	9.755	9.910						
	体;	積 V =	: (π	$D^{2}/4$	4) <i>H</i>	$cm^3$	192. 31	192.25						
		容	器		No	).								
		<i>m</i> a		g	362.89	360.28								
含	$m_{ m b}$		g	274. 50	269.67									
	m.c g			g										
			w			%	32.2	33.6						
水		容	器		No	).								
			$m_{a}$			g								
			m _b			g								
比			$m_{\circ}$			g								
			w			%								
	-	平 1	匀	値	w	%	32.2	33.6						
湿潤	密度 ρ	$m_{\rm t} = m / m$	V			g/cm³	1.887	1.874						
乾燥	密度 ρ	$\rho_{\rm d} = \rho_{\rm t}/$	(1+ u	/10	0)	g/cm³	1.427	1.403						
間隊	( 比 <i>e</i>	$\rho = (\rho_s)$	$/\rho_{d})$	-1			0.865	0.897						
飽和	」度 5	$S_r = w \rho$	_s /(e	$\rho_w$ )		%	99.1	99. 7						
土粒	子の	密度 ρ	s			g/cm ³	2.661	平均值 w %	32	. 9	平均值	$ ho_{ m t}$	g/cm ³	1.881
平	均	値 ρ	d			g/cm ³	1.415	平均值 e	0.8	81	平均値	$S_{\rm r}$	%	99.4

特記事項

J	T	S	А
т	0	0	

JIS A 1202 TCS 01111 土 粒 子 の 密 度 試 験 (測定)

-----

### 調查件名 地質調査委託

試験年月日 平成 27年 10月 23日 _ _ _ _

試 験 者 寺岡 貴史

試料番号(深さ)	T5-1 (3.00	∼3.80m)			
ピクノメーター No.	20	64	145		
(試料+蒸留水+ピクノメーター)の質量 <b>m</b> _b g	162.639	164.062	160.615		
$m$ をはかったときの内容物の温度 $T$ $^{\circ}$ C	22.9	22.9	22.9	 	
<i>T</i> ℃における蒸留水の密度 ρ _w ( <i>T</i> )g/cm ³	0.99756	0.99756	0.99756	 	
温度 $f^{\circ}$ Cの蒸留水を満たしたときの ¹⁾ (蒸留水+ピクノメーター)質量 $m_{a}^{a}$ g	144.405	146.810	143.195	 	
容 器 No.	20	64	145		
試料の(炉乾燥試料+容器)質量g	70.021	64.928	63.073		
炉乾燥質量 容 器 質 量 g	40.864	37.327	35. 193	 	
m _s g	29. 157	27.601	27.880		
土 粒 子 の 密 度 $ ho_{s}$ g/cm ³	2.663	2.661	2.659		
平均值 $\rho_s$ g/cm ³		2.661			
試料番号(深さ)				 	
ピクノメーター No.					
(試料+蒸留水+ピクノメーター)の質量 m _b g				 	
$m$ をはかったときの内容物の温度 $T$ $^{\circ}$ C					
T℃における蒸留水の密度 ρ _w (T)g/cm ³					
温度プ℃の蒸留水を満たしたときの ¹⁾ (蒸留水+ピクノメーター)質量 <b>m</b> ^a g					
容器 No.					
試料の(炉乾燥試料+容器)質量g				 	
炉乾燥質量 容器質量 g					
m _s g					
土 粒 子 の 密 度 $ ho_{s}$ g/cm ³					
平均值 $\rho_s$ g/cm ³					
試料番号(深さ)					
ピクノメーター No.					
(試料+蒸留水+ピクノメーター)の質量 m _b g				 	
$m$ をはかったときの内容物の温度 $T$ $^{\circ}\mathrm{C}$					
T℃における蒸留水の密度 ρ _w (T)g/cm ³					
温度 $T^{\mathbb{C}}$ の蒸留水を満たしたときの ¹⁾ (蒸留水+ピクノメーター)質量 $m_{a}$ g					
容 器 No.				 	
試料の (炉乾燥試料+容器)質量g				 	
炉乾燥質量 容 器 質 量 g				 	
m _s g				 	
土 粒 子 の 密 度 ρ _s g/cm ³					
平 均 值 ρ _s g/cm ³					

特記事項

1) ピクノメーターの検定結果から求める。

$$\rho_{\rm s} = \frac{m_{\rm s}}{m_{\rm s} + (m_{\rm a} - m_{\rm b})} \times \rho_w(T)$$

JIS	А	$1\ 2\ 0\ 3$
JGS		$0\ 1\ 2\ 1$

土の含水比試験

調查件名 地質調查委託

試験年月日 平成 27年 10月 21日

試 験 者 寺岡 貴史

試料番号 (深さ)	T5−1 (3.00~3	3.80m)				
容 器 No.	1328	1337	1358			
ma g	304.17	303.38	301.93			
m₅ g	266.21	264.80	264.16			
m₀ g	149.34	146.13	147.52			
w %	32.48	32.51	32.38			
平均值 11/ %		32.5		-		
特記事項						
容器 No						
<b>m</b> , g					+	
111c 8						
<i>W</i> /0 亚均值 ···						
牛均恒 0 /0						
村 記 争 頃						
試科番号(保さ) 				+		
容器 No.						
<i>m</i> .a. g						
<u></u> ть g						
m∘ g						
%						
平均值 w %						
特記事項						
試料番号 (深さ)						
容 器 No.						
ma g						
m₅ g						
<i>m</i> ∘ g						
w %						
平均值 w %					-	
特記事項						
試料番号 (深さ)						
容器 No.						
ma g						
mь g					+	
<i>m</i> . g						
w %						
平均值 u %				+		1
				+		
				$w = \frac{m_{\text{a}} - m_{\text{b}}}{m_{\text{b}} - m_{\text{b}}}$	×100 <i>m</i> a:(試本 <i>m</i> a:(試本	r⊤谷奋/頁重 [悒試料→次哭)唇鼻
					111b · \/ #0	

**m**。:容器質量

### JIS A 1204 JGS

 $0\ 1\ 3\ 1$ 

 $\mathcal{O}$ 

±

粒

度

試 験(粒径加積曲線)

調査件名 地質調査委託 試験年月日 平成 27年 10月 23日

								試	験	者	寺岡	貴史	
試料番号	T5-1					試	料	番	号		T5-1		
(深 さ)	$(3.00 \sim 3.$	80m)				( 沒	EV.		さ)		(3.00~;	3.80m)	
	粒径㎜	通過質量百分率%	粒径㎜	通過質量百分率%	粗	碀	<b>柴</b>	分		%		_	
	75		75		中	磴	<b>柴</b>	分		%		-	
\$	53		53		細	磴	<b>柴</b>	分		%		2.6	
	37.5		37.5		粗	石	少	分		%	1	1.6	
3	26.5		26.5		中	石	少	分		%	1	8.2	
Č	19		19		細	石	少	分		%	1	5.7	
L)	9.5		9.5		$\overline{\mathcal{V}}$	N	<u>۲</u>	分		%	2	25.4	
v.	4.75	100.0	4.75		粘	Ŀ	E	分		%	2	26.5	
$\wedge$	2	97.4	2		2mm	ふるり	通過	質量	百分率	萃 %	<u> </u>	97.4	
77	0.850	85.8	0.850		425	$\mu$ m $\delta$	るい通道	過質量	百分率	革 %	7	74.4	
	0.425	74.4	0.425		75 J	umふそ	い通道	副質量	百分率	赵 %	5	51.9	
竹	0.250	67.6	0.250		最	大	粒	径		mm	4	1.75	
	0.106	54.8	0.106		60	%	粒	径	$D_{60}$	mm	C	). 16	
	0.075	51.9	0.075		50	%	粒	径	$D_{50}$	mm	0.	062	
	0.0499	47.1			30	%	粒	径	$D_{30}$	mm	0.0	092	
*	0.0357	42.0			10	%	粒	径	$D_{10}$	mm		_	
1/L	0.0228	38.1			均	等	係	数	$U_{\rm c}$			_	
降	0.0133	32.9			曲		係	数	$U_{\rm c}^{\prime}$			_	
	0.0095	30.3			±	粒子	の 密	度	$\rho_{s}$	g/cm ³	2.	661	
分	0.0067	27.7			使月	用した;	分散剤	J			ヘキサメタりん	酸ナトリウム	
析	0.0034	25.1			溶液	夜濃度	,溶液	添加	量		飽和溶液,	10m1	
۸T	0.0014	22.5			20	%	粒	径	$D_{20}$	mm		_	



JIS A 1205 土の液性限界・塑性限界試験(試験結果) JGS 0141

調查件名 地質調查委託

試験年月日 平成 27年 10月 28日

試料番号	·(深さ) T5-1	(3.00∼3.80m)	
液	反性限界試験	塑性限界試験	液性限界 ω」 %
落下回数	含水比 w %	含水比 w %	64.0
40	61.9	29.9	塑性限界 ω, %
30	63.0	29.8	30.0
20	64.9	30.2	塑性指数 1,
15	66.4		34.0
11	67.9	0 425mmフノ	レイ通過試料
		J. 1201111 / /	• 1 X = X = 1 • V[*]

試料番号(深さ)

液	生限界試驗	<u></u> 角		塑性限界試験			液性限界	$w_{\text{L}}$	%
落下回数	含水比	w	%	含水比	w	%			
							塑性限界	$w_{\scriptscriptstyle P}$	%
	[								
							塑性指数	$I_{\rm p}$	

#### 試料番号 (深さ)

液	生限界試驗	贠		塑性限界試験			液性限界	$w_{\text{\tiny L}}$	%
落下回数	含水比	w	%	含水比	w	%			
							塑性限界	$w_{\scriptscriptstyle P}$	%
							塑性指数	$I_{\rm p}$	

#### 試料番号 (深さ)

液性限界試験			塑性限界試験			液性限界	$w_{\text{L}}$	%	
落下回数	含水比	w	%	含水比	w	%			
							塑性限界	$w_{\scriptscriptstyle P}$	%
							塑性指数	$I_{\rm p}$	
11									

特記事項



JGS 0051

## 地盤材料の工学的分類

### 調查件名 地質調查委託

試験年月日 平成 27年 10月 28日

試 験 者 寺岡 貴史

試 料 番 号	T5-1				
(深さ)	$(3.00 \sim 3.80 \text{m})$				
石 分(75mm以上) %					
礫 分(2~75mm) %	2.6				
砂 分(0.075~2mm) %	45.5	 			
細粒分(0.075mm未満) %	51.9	 			
シルト分(0.005~0.075mm)%	25.4				
粘 土 分(0.005mm未満) %	26.5	 			
最大粒径 mm	4.75				
均等係数U。	-				
液性限界 WL %	64.0				
塑性限界 Wp %	30.0	 			
塑性指数 Ip	34.0				
	砂質粘土				
地盤材料の分類名	(高液性限界)				
分類記号	(CHS)				
凡例記号	0	 [			[





(社)地盤工学会6722

JIS	А	$1\ 2\ 1\ 7$	7
JGS		0411	

### 土の段階載荷による圧密試験(計算書)

調査件名 地質調査委託 試験年月日 平成 27年 10月 20日

試料番号	(深さ)	T5-1	$(3.00 \sim 3)$	.80m)

試料	番号(深さ	) T5-1	(3.00~3.8	Om)				試	験	ž I	寺岡 貴史		
試験	機 No.				直 径 D	cm	6.00	0	初	含7	と比 w %	41.	1
最低	~最高室温	°C	18~22	供	断 面 積 A	$cm^2$	28.2	7	期	 間隙	:比 <i>e</i> o, <del>体積比<i>F</i>o</del>	1.12	26
土質	〔名称	砂質	粘土(高液性限界)(CHS)	1	高 さ H ₀	cm	2.00	0	状	湿潤	密度 $\rho_{\rm t} {\rm g/cm^3}$	1.76	36
土粒子	子の密度 ρ _s	g/cm ³	2.661	武	質 量 <i>m</i> a	g	99.8	5	態	飽利	印度 S _{r0} %	97.	1
液性	E限界 w1	%	64.0	体	炉乾燥質量 m。	g	70.7	7	圧 縮	指導	数 C _c	0.4	<u>1</u> 6
塑性	E限界 wp	%	30.0		実質高さ H。	cm	0.940	8	圧密障	备伏/	芯力 p。kN/m²	63.	6
載荷	圧密圧力 <i>p</i>		1 <i>p</i> 圧密量	$\Delta H$	供試体高さ Η	平均	回供試体高さ <i>日</i>	圧 縮	ひす	み	体積圧縮係数 m.	間隙比 e=1	<i>H</i> / <i>H</i> ₅− 1
段階	$kN/m^2$	kN/m ²	cm		cm		cm	$\Delta \epsilon = \Delta h$	$H/\overline{H} \times 10$	)%	m²/kN	<del>体積比<i>1</i>=</del> /	$H_{\rm s}$
0	0.0				2.0000							1.1	26
		5. 0	0.00	75			1.9963	(	). 376		7.52E-4		
1	5.0				1.9925							1.1	18
		5. (	0.01	06			1.9872	(	0. 533		1.07E-3		
2	10.0				1.9819							1.1	07
		10. (	0.01	62			1.9738	(	0.821		8.21E-4		
3	20.0				1.9657							1.0	89
		20. 0	0.03	33			1.9491	]	1.708		8. 54E-4		
4	40.0				1.9324							1.0	54
		40. 0	0.07	71			1.8939	4	4.071		1.02E-3		
5	80.0				1.8553							0.9	72
		80. (	0.12	23			1. 7942	(	6.816		8. 52E-4		
6	160.0				1. 7330							0.8	42
		160.0	0.13	04			1.6678		7.819		4.89E-4		
7	320.0				1.6026							0.7	03
		320.0	0.12	10			1.5421		7.846		2. 45E-4		
8	640.0				1. 4816							0.5	75
		-635. (	) -0.10	79			1. 5356	-'i 	(. 027		1.11E-4		
9	5.0				1. 5895							0.6	90
10 ++>#=	亚均正索正力			hr .	<b>玉</b> 水反粉 1			Ver		: 66	****	チャクジャ	- 1/
■ 東111 「 下111比	平均庄畜庄 川p	190 , <del>150</del>		X C _v		1-t	人工省里 $\Delta \Pi_1$	- 1A	1二 往	i 1-1_ 1 11	桶正圧密係数	透小休毅	K
-0-	2.5	0.20	/195	2 2	3 58F-8		0.0012	1	$\frac{2}{160}$		$\frac{c_v - ic_v}{671} = \frac{671}{2}$	5 73	 F0
1	7 1	0.25	3001	 1	3. 76F-8		0.0012		100		391 5	3 011	 F_0
2	14 1	0.33	2703	0	2 52F-8		0.0028		104		467 6	4 36	5_5 F_9
3		3 75	309	 3	3 00F-9		0.0020		) 276		85.4	8 28F-	-10
4	<u></u> 56_6	4 75	230	5	2.67E-9		0.0270	 (	3.210		80 7	9.35F-	-10
5	113 1	5.54	177	4	1. 72E-9		0. 0486	 (	). 397		70.4	6.81F-	-10
6	226.3	4.48	189	- <u>-</u> 5	1. 05E-9		0. 0562	 (	). 431		81.7	4.54E	-10
7	452.5	1. 82	398	9	1.11E-9		0. 0383	`¦	3.317		126.5	3. 52E-	-10
8	56.6							+`					
9						- +		+					
— 10 [⊥]	特記事項	1	I		1		$H_{\rm s} = m_{\rm s}$	$/(\rho_s A)$	)		$\overline{p} = \sqrt{p \cdot p'}$	-	

 $H = H' - \Delta H$  $\overline{H} = (H + H')/2$  $m = (\Delta \epsilon / 100) / \Delta p$  $S_{\rm r0} = w_0 \rho_{\rm s} / (e_0 \rho_w)$ 

 $\sqrt{t}$ 法:  $c_v$  =305× $\overline{H}^2/t_{90}$ <u>─曲線定規法:c_{*}=70.9× <u>∏²/t</u>∞</sub></u>  $k = c_v m_v \gamma_w / (8.64 \times 10^8)$  $k' = c'_{y} m_{y} \gamma_{w} / (8.64 \times 10^{8})$ ただし,  $\gamma_w \Rightarrow 9.81 \text{kN/m}^3$ [1kN/m²≒0.0102kgf/cm²]

JISAI JGS 04	$\begin{vmatrix} 2 & 1 & 7 \\ 4 & 1 & 1 \end{vmatrix} \pm \sigma$	)段 階 載	荷による	5 圧 密 試	験(圧縮曲	線)	
調査件名 地	質調査委託			ה 	式験年月日 平	成 27年 10月	20日
試料番号(深さ	z) T5-1 (3.0	0∼3.80m)		٦ ٦	式 験 者 寺	岡 貴史	
土粒子の密度	液性限界	塑性限界	初期含水比	初期間隙比 e ₀	圧縮指数	E密降伏応力	ひずみ速度 ¹⁾
$\frac{\rho_{\rm s}{\rm g/cm}}{2.661}$	$\frac{w_{\text{L}} \%}{64.0}$	$\frac{w_{p}}{30.0}$	<u>41.1</u>	<del>初期体積止了。</del> 1.126	0.46	63.6	%/m1n
			透水係数 k	(m/s) ²⁾			
1.35							
1.30							
1.25							
1.20							
1.15		p. =	= 63.6 kN/m ²				
1 10		X V					
1.10							
1.05							
1.00		N N					
0.05							
0.95							
0.90			X				
0.85							
0.90				X			
0.00				X			
0.75				X			
0.70							
0.65				X	x		
		*****	• • • • • • • • •		X		
0.60				******			
0.55							
0.50							
0.45							
0.40	20	50	100	200	500 10	00 2000	5000
	20		压密圧力 <i>p</i> (1	xN/m ² )		2000	
特記事項				1)定ひず 2)定ひず	み速度載荷による み速度載荷による	5 圧密試験の時の 5 圧密試験の時の [1kN/m ² =0.01	)み記入する。 )み使用する。 .02kgf/cm ² ]

(社)地盤工学会6636



特記事項

# 計量証明書

発行番号 №ES50534 -1/3 発行年月日 平成27年11月16日



濃度計量証明書

仙南地域広域行政事務組合 殿

計量証明事業登録宮城県第45号 事業者エヌエス環境株式会社 〒105-0003 東京都港区西新橋3-24-9 事業所東北支社 伯台分析センター 〒983-0013 仙台市宮城野区中野 目3番地の2 面(022) 254 1561 計量管理者 高橋 義晴 環境計量士(濃度関係) 登録番号 第6344号

貴依頼による計量の結果を下記のとおり証明致します。

試料採取日	平成27年9月14日	採取時刻 -	採取者/同	斤属	小林大介/東北ボー	リング株式会社	
採取状況			-L.		うちかり が (4 口	亚卡四左11日0日	
採取場所	呂城県柴田郡村田    地 <u></u> ) 町本禾託	]大子沿边和沢地	И		訊科 文 竹 日	平成27年11月2日	
武料名	地負調查安託 No.1 地点土壤試	料			計量の対象	土壤	
	計量の項目	(単位)	計量の結果	定 量 下限値	計量	の方法	
カドミウム及て	バその化合物	(mg/L)	0.001未満	0.001	JIS K 0102 55.4(2013)		
六価クロム化	合物	(mg/L)	0.01未満	0.01	JIS K 0102 65.2.1(201	3)	
シアン化合物	9	(mg/L)	0.1未満	0.1	JIS K 0102 38.1.2及び	×38.5(2013)	
水銀及びその	D化合物	(mg/L)	0.0005未満	0.0005	S46環告第59号付表1	(H26改正)	
セレン及びそ	の化合物	(mg/L)	0.001未満	0.001	JIS K 0102 67.4(2013)		
鉛及びその作	七合物	(mg/L)	0.002	0.001	JIS K 0102 54.4(2013)		
砒素及びその	D化合物	(mg/L)	0.001未満	0.001	JIS K 0102 61.4(2013)		
ふっ素及びそ	その化合物	(mg/L)	0.12	0.08	JIS K 0102 34.4(2013)		
ほう素及びそ	の化合物	(mg/L)	0.1未満	0.1	JIS K 0102 47.4(2013)	)	
	以	下余白					
備 ・計量に供 ・溶出量詞	もした試料は、客先が 試験「土壌汚染対策法	采取した持込試料 施行規則」に基づ	・ である。 く土壌溶出量調	周査に係る	則定方法(平成15年 環境	竟省告示第18号)	
			, x, F H == H				
考							

発行番号 №ES50534 -2/3 発行年月日 平成27年11月16日



濃度計量証明書

仙南地域広域行政事務組合 殿

計量記明事業登録宮城県第45号 事業者 エヌエス環境株式会社 〒105-0003 東京都港区西新橋3-24-9 事業所東北支社 - 仙台分析センター 〒983-0013 仙台市宮城野区中野三丁目3番地の2 Fu (022) 254 - 4561 計量管理者 高橋義晴

環境計量士(濃度関係) 登録番号 第6344号

会環工

貴依頼による計量の結果を下記のとおり証明致します。

試料採取日	平成27年9月28日 採取時	成27年9月28日 採取時刻 - 採取者/所属			小林大介/東北ボーリング株式会社			
採取状況	-							
採取場所	宫城県柴田郡村田町大字沼	辺粕沢地	内		試料受付日	平成27年11月2日		
件 名 地質調査委託								
試料名 No.3 地点土壌試料 計量の対象 土壌								
	計量の項目	(単位)	計量の結果	定 量 下限值	計量	の方法		
カドミウム及ひ	その化合物	(mg/L)	0.001未満	0.001	JIS K 0102 55.4(2013)			
六価クロム化	合物	(mg/L)	0.01未満	0.01	JIS K 0102 65.2.1(2013			
シアン化合物		(mg/L)	0.1未満	0.1	JIS K 0102 38.1.2及び	38.5(2013)		
水銀及びその	化合物	(mg/L)	0.0005未満	0.0005	S46環告第59号付表1()	H26改正)		
セレン及びそ	の化合物	(mg/L)	0.001未満	0.001	JIS K 0102 67.4(2013)			
鉛及びその化	合物	(mg/L)	0.001未満	0.001	JIS K 0102 54.4(2013)			
砒素及びその	0化合物	(mg/L)	0.001未満	0.001	JIS K 0102 61.4(2013)			
ふっ素及びそ	の化合物	(mg/L)	0.32	0.08	JIS K 0102 34.4(2013)			
ほう素及びそ	の化合物	(mg/L)	0.1未満	0.1	JIS K 0102 47.4(2013)			
	以下余白							
	Б							
		<u> </u>						
・計量に供	した試料は、客先が採取した	持込試料	である。		 			
「「お出量討	、験1土壤汚染対策法施行規則	則に基づ	く土壌溶出量調	間査に係る液	則定方法(平成15年 環境	省告示第18号)		
考								

発行番号 №ES50534 -3/3 発行年月日 平成27年11月16日



濃度計量証明書

仙南地域広域行政事務組合 殿

 事業者 エヌ
 東京都港区西新橋3-24-9

 事業所 東北支社
 山台分析センター

 〒983-0013 仙台市宮城野区中野
 丁目3番地の2

 正(022) 254
 461

 計量管理者
 高橋 義晴

環境計量士(濃度関係) 登録番号 第6344号

合理:

貴依頼による計量の結果を下記のとおり証明致します。

試料採取日 平成27年10月5日 採取時	取時刻 – 採取者/所属			小林大介/東北ボーリング株式会社					
採取状況 -									
採取場所 宮城県柴田郡村田町大字沼	辺粕沢地	内		試料受付日	平成27年11月2日				
件名   地質調査委託									
試料名   No.5 地点土壌試料  計量の対象   土壌									
計量の項目	(単位)	計量の結果	定 量 下限値	計量	の方法				
カドミウム及びその化合物	(mg/L)	0.001未満	0.001	JIS K 0102 55.4(2013)					
六価クロム化合物	(mg/L)	0.01未満	0.01	JIS K 0102 65.2.1(201	3)				
シアン化合物	(mg/L)	0.1未満	0.1	JIS K 0102 38.1.2及び	38.5(2013)				
水銀及びその化合物	(mg/L)	0.0005未満	0.0005	S46環告第59号付表10	(H26改正)				
セレン及びその化合物	(mg/L)	0.001未満	0.001	JIS K 0102 67.4(2013)					
鉛及びその化合物	(mg/L)	0.001	0.001	JIS K 0102 54.4(2013)					
砒素及びその化合物	(mg/L)	0.001未満	0.001	JIS K 0102 61.4(2013)					
ふっ素及びその化合物	(mg/L)	0.08未満	0.08	JIS K 0102 34.4(2013)					
ほう素及びその化合物	(mg/L)	0.1未満	0.1	JIS K 0102 47.4(2013)					
以下余白									
	*								
			×						
備・計量に供した試料は、客先が採取した ・溶出量試験「十嬢汚沈対策決協行相同	持込試料	である。 く 十	周杏に存入り	則定方法(平成15年 晋悌	音省告示第18号)				
117日里陀顿,上次门木刈水46周1306		∖⊥次117川里卯	n n n n n n n n n n n n n n n n n n n	*************************************					
考									